Эволюция тонкой структуры картины слияния составной капли в импактном режиме



Fine Structure Evolution of the Merger Pattern of a Compound Drop in the Impact Mode

Using the method of high-speed video registration of the process of compound drop immersion in deep water, the work traced the patterns of distribution of drop substances over the deformed surface of the target fluid in the splash formation mode. Compound drops were a core of alizarin ink covered with an oil layer. In the experiments, the height of the drops' fall, their diameter, and the position of the core of the compound drop relative to its geometric center were varied. Fine structures were observed at all stages of the impact, starting from the contact of the oil shell of the compound drop with the surface of the target fluid, ending with a splash and slow intrusion. The last two stages are given special attention in the work. Using direct measurements and spectral analysis, the characteristic sizes of fine currents were revealed.

compound drops, experiment, cavity, crown, splash, fine structures


Методом скоростной видеосъемки процесса слияния составных капель в глубокую воду прослежены картины распределения вещества капли по деформированной поверхности принимающей жидкости в режиме формирования всплеска в продолжение регистрации эволюции тонкой структуры течения на начальном этапе слияния составных капель. В проведенных опытах менялась высота падения капель, их диаметр, а также положение ядра составной чернильно-масляной капли относительно ее геометрического центра. Тонкие структуры наблюдались на всех этапах течения, начиная от касания масляной оболочки составной капли поверхности принимающей жидкости, формирования каверны, растекания ядра и формирования всплеска. C помощью прямых измерений и спектрального анализа оцениваются характерные размеры тонких течений и структур.

составные капли, эксперимент, каверна, всплеск, тонкая структура


1. Ilyinykh A. Yu. Waves and bubbles of the impact of a drop // Bulletin of the Russian Academy of Sciences: Physics. 2023. V. 87, № 1. P. 99–104 (in Russian). DOI: 10.31857/S0367676522700181
2. Ray B., Biswas G., Sharma A. Regimes during liquid drop impact on a liquid pool. Journal of Fluid Mechanics. 2015. V. 768. P. 492-523. doi:10.1017/jfm.2015.108
3. Chashechkin Y.D., Il’inykh A.Y., Khaiirbekov S.K. The Initial Stage of the Coalescence of a Compound Drop in an Impact Regime // Fluid Dyn. 2024. N. 59. P. 202–218. Doi: 10.1134/S0015462824600226
4. Mohasan M., Aqeel A. B., Lv P., Yang Y., Duan H. Cavity dynamics of water drop impact onto immiscible oil pool with different viscosity // Acta Mechanica Sinica. 2021. V. 37(3). P. 447–455 doi:10.1007/s10409-020-01032-4
5. Castillo-Orozco E, Davanlou A., Choudhury P.K., Kumar R. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets // Phys. Rev. 2015. E92, 053022. Doi:10.1103/PhysRevE.92.053022
6. Yu. D. Chashechkin, A. Yu. Ilyinykh. Rupture of a falling splash – a dynamic trace of the fusion of a freely falling drop with a stationary receiving liquid // Doklady Physics. 2022. V. 505, № 1, p. 50-58. DOI: 10.31857/S268674002203004X
7. Chashechkin Yu.D. Packets of capillary and acoustic waves of drop impact // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2021. No. 1 (94). P. 73–92 (in Russ.). DOI: 10.18698/1812-3368-2021-1-73-91
8. Josserand C, Ray P, Zaleski S. Droplet impact on a thin liquid film: anatomy of the splash // Journal of Fluid Mechanics. 2016. V. 802. P. 775-805. doi:10.1017/jfm.2016.468
9. Fudge BD, Cimpeanu R, Castrejón-Pita AA. Dipping into a new pool: The interface dynamics of drops impacting onto a different liquid // Phys Rev E. 2021. V. 104 (6-2): 065102. doi: 10.1103/PhysRevE.104.065102
10. Xiaoyun Peng, Tianyou Wang, Kai Sun, Zhizhao Che Droplet splashing during the impact on liquid pools of shear-thinning fluids with yield stress // Physics of Fluids. 2021. V. 33 (11): 112106. DOI: 10.1063/5.0068234
11. Saushin I. Splashing criterion when drop impacting on the liquid with liquid film // E3S Web of Conferences 389, 01034 (2023). DOI: 10.1103/PhysRevE.104.065102
12. Rajendran S., Jog M. A., Manglik R. M. Predicting splash of a drop impacting a thin liquid film // Langmuir. 2023. V. 39 (41). P. 14764–14773. DOI: 10.1021/acs.langmuir.3c02185
13. Blanken N, Saleem MS, Thoraval M-J, Antonini C. Impact of compound drops: a perspective // Current Opinion in Colloid & Interface Science. 2020. vol.51, 101389. https://doi.org/10.1016/j.cocis.2020.09.002
14. Wang L., Thoraval M.-J. Air-in-liquid compound drop impact onto a pool // Phys. Fluids. 2022. vol. 34. pp. 102101. DOI: 10.1063/5.0086745
15. Sapei L., Naqvi M.A., Rousseau D. Stability and release properties of double emulsions for food applications // Food Hydrocolloids. 2012. Vol. 27(2). P. 316–323. DOI:10.1016/j.foodhyd.2011.10.008
16. Kan H.C., Udaykumar H.S, Shyy W., Tran-Son-Tay R. Hydrodynamics of a compound drop with application to leukocyte modeling // Phys. Fluids. 1998. vol. 10(4). pp. 760–774. DOI:10.1063/1.869601
17. Kim D., Lee J., Bose A., Kim I., Lee J. The impact of an oil droplet on an oil layer on water // J. Fluid Mech. 2020. V. 906. DOI: https://doi.org/10.1017/jfm.2020.791
18. Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the distribution of impurities in the ocean and atmosphere, Institute for Problems in Mechanics RAS. Available online: http://ipmnet.ru/uniqequip/gfk (accessed on 15 June 2023)
19. Chashechkin Y., Ilinykh A., Khaiirbekov S. Fine Structure of the Compound Drop Substance Distribution in the Target Fluid in the Splash Formation Mode//Physical-Chemical Kinetics in Gas Dynamics. 2023. V.24, iss. 5. http://doi.org/10.33257/PhChGD.24.5.1073
20. Chashechkin Y.D., Ilinykh A.Y. Fine flow structure at the miscible fluids contact domain boundary in the impact mode of free-falling drop coalescence // Fluids. 2023. Vol. 8, no. 10. P. 269. DOI: 10.3390/fluids8100269
21. Chashechkin Y. D., Foundations of engineering mathematics applied for fluid flows // Axioms. 2021, vol. 10, no. 4, p. 286. https://doi.org/10.3390/axioms10040286.