Three-dimensional modeling of heat balance on the example of an experimental aircraft HIFiRE-1

In this paper, we consider the solution of the spatial problem of the heat balance of a high-speed experimental aircraft, taking into account a heterogeneous combination of materials and their compositions. To solve this problem, a virtual geometry model of the HIFiRE-1 aircraft was used in the form of a blunt cone turning into a cylinder. The problem was solved using the Thermal Conductivity 3D (TC3D) computer code, which is based on the heat conduction equation related to second-order parabolic type equations.

TC3D, mathematical modeling, unstructured mesh, cone-cylinder-skirt, HIFiRE-1.

Volume 23, issue 1, 2022 year

Трехмерное моделирование теплового баланса на примере экспериментального летательного аппарата HIFiRE-1

В данной работе рассматривается решение пространственной задачи теплового баланса высокоскоростного экспериментального летательного аппарата с учетом разнородного сочетания материалов и их композиций. Для решения этой задачи использовалась виртуальная модель геометрии летательного аппарата HIFiRE-1 в виде затупленного конуса, переходящего в цилиндр. Задача решалась
с использованием компьютерного кода Thermal Conductivity 3D (TC3D), в основу которого положено уравнение теплопроводности, относящееся к уравнениям параболического типа второго порядка.

TC3D, математическое моделирование, неструктурированная сетка, конус-цилиндр-юбка, HIFiRE-1.

Volume 23, issue 1, 2022 year

1. Electronic resource DOI: http://www/
2. Surzhikov S. T. Calculation analysis of the experimental data of HIFiRE-I using the computer code NERAT-2D//2018 J. Phys.: Conf. Ser., 2018, vol. 1009, art. 012001.
3. Surzhikov S.T. Computer aerophysics of descent space vehicles. two-dimensional models. M., Fizmatlit, 2018.
4. Koryukov I.A., Rybakov A.N. Solving the spatial problem of the heat balance of a high-speed aircraft // Physico-chemical kinetics in gas dynamics. 2021. V.22, issue. 2. DOI:
5. Surzhikov S.T. Thermal radiation of gases and plasmas. Moscow, publishing house of Moscow State Technical University named after N.E. Bauman, 2004.
6. Kimmel R.L., Adamczak D., Gaitonde D., Rougeux A. and Hayes J.R. HIFiRE-1 Boundary Layer Transition Experiment Design//45th AIAA Aerospace Sc. Meeting and Exhibit, 2007. AIAA 2007-534. DOI:
7. Zinoviev V.E. Thermophysical properties of metals at high temperatures. Publishing house - in. "Metallurgy", 1989
8. Chirkin V.S. Thermophysical properties of nuclear engineering materials. M.: Atomizdat, 1967. - 474s.
9. Aviation materials: a reference book in 13 volumes. - 7th ed., revised. and additional / Under the total. ed. E.N. Kablov. – M.: VIAM, 2018, 248 p.
10. Silvestrov P.V., Surzhikov S.T. Numerical simulation of ground experiment HIFiRE-1//Bulletin of MSTU im. N.E. Bauman. Ser. Engineering, 2020, No. 3, pp. 29-46. DOI:
11. Surzhikov S. T. Validation of computational code UST3D by the example of experimental aerodynamic data//J. Phys.: Conf. Ser., 2017, vol. 815, art. 012023.
12. Silvestrov P. V., Surzhikov S. T. Calculation of aerothermodynamics of high-speed aircraft X-43 using computer codes UST3D and UST3D-AUSMPW//Physical-chemical kinetics in gas dynamics. 2019. V.20, issue. 4. DOI:
13. Surzhikov S. T., “Numerical interpretation of experimental data on the aerodynamics of the HB-2 model using computer codes USTFEN and PERAT-3D,” Physicochemical Kinetics in Gas Dynamics. 2020. V.21, issue. 1.
14. Tikhonov A.N., Samarskii A.A. Equations of mathematical physics. Ed. 5th, stereotyped, textbook for higher educational institutions, Main edition of the physical and mathematical literature of the Nauka publishing house, M., 1977, 736 p.