Двумерная модель нестационарного коронного разряда от периодической плоскопараллельной системы заземленных проводов в электрическом поле грозового облака



2D computer model of a non-stationary corona from an infinite grating composed of parallel grounded wires in a thundercloud electric field

This paper deals with a non-stationary corona developing in free space from a plane-parallel infinite periodic system of grounded wires suspended at the same height in a growing uniform thundercloud electric field. The discharge is described by the continuity equation for positive ions and electrostatic equation for the electric field induced by wire charges and ion space charge. These equations were solved using a two-dimensional computer program, which was developed in this study and then used to calculate the corona current, the distribution of the space charge generated by the corona, and the potential distribution in space surrounding the wires. The obtained characteristics of the corona may be of interest for the purpose of increasing the reliability of lightning protection wires.

corona discharge, numerical simulation, atmospheric electricity


Том 21, выпуск 2, 2020 год



Рассмотрен теоретически нестационарный коронный разряд, развивающийся в свобод-ном пространстве от плоскопараллельной бесконечной периодической системы заземленных проводов, подвешенных на одинаковой высоте и находящихся в нарастающем однородном электрическом поле грозового облака. Разряд описывается системой уравнений для плотности положительных ионов и уравнением Пуассона для электрического поля. Для решения этих уравнений разработана двумерная компьютерная программа, на основе которой рассчитаны коронный ток, распределения объемного заряда, генерируемого короной, и распределения потенциала в окружающем провода пространстве. Полученные характеристики короны могут представлять интерес для повышения надежности многотросовой молниезащиты заземленных объектов.

коронный разряд, численное моделирование, атмосферное электричество


Том 21, выпуск 2, 2020 год



1. Bazelyan E.M. and Raizer Yu.P. The mechanism of lightning attraction and the problem of lightning initiation by lasers// Phys.—Usp. 2000. Vol. 43. Pp.701–16.
2. Aleksandrov N.L., Bazelyan E.M., Carpenter R.B. Jr, Drabkin M.M. and Raizer Yu.P. The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps//J. Phys. D: Appl. Phys. 2001. Vol. 34. Pp. 3256–66.
3. Bazelyan E.M., Raizer Yu.P. and Aleksandrov N.L. Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment//Plasma Sources Sci. Technol. 2008. Vol. 17. Pp. 024015.

4. Rizk F.A.M. Analysis of space charge generating devices for lightning protection: performance in slow varying fields//IEEE Trans. Power Deliv. 2010. Vol. 25. Pp. 1996–2006.
5. Rizk F.A.M. Exposure of overhead conductors to direct lightning strikes: modeling of positive streamer inhibition //IEEE Trans. Power Deliv. 2011. Vol.26. Pp. 1156–65
6. Becerra M. Glow corona generation and streamer inception at the tip of grounded objects during thunderstorms: revisited//J. Phys. D: Appl. Phys. 2013. Vol. 46. Pp.135205
7. Mokrov M.S., Raizer Yu.P. and Bazelyan E.M. Development of a positive corona from a long grounded wire in a growing thunderstorm field//J. Phys. D: Appl. Phys. 2013. Vol. 46. Pp. 455202.
8. Becerra M. Corona discharges and their effect on lightning attachment revisited: Upward leader ini-tiation and downward leader interception//Atmospheric Research. 2014. Vol. 149. Pp. 316.
9. Bazelyan E.M., Raizer Yu.P. and Aleksandrov N.L. Non-stationary corona around multi-point sys-tem in atmospheric electric field: I. Onset electric field and discharge current//Journal of Atmos-pheric and Solar-Terrestrial Physics. 2014. Vol. 109. Pp. 80.
10. Bazelyan E.M., Raizer Yu.P. and Aleksandrov N.L. Non-stationary corona around multi-point sys-tem in atmospheric electric field: II. Altitude and time variation of electric field//Journal of Atmos-pheric and Solar-Terrestrial Physics. 2014. Vol. 109. Pp. 91.
11. Bazelyan E.M., Raizer Yu.P. and Aleksandrov N.L. The effect of space charge produced by corona at ground level on lightning attachment to high objects//Atmospheric Research. 2015. Vol. 153. Pp. 74–86.
12. Nguyen N.C., Guerra-Garcia C., Peraire J. and Martinez-Sanchez M. Computational study of glow corona discharge in wind: Biased conductor//Journal of Electrostatics. 2017. Vol.89. Pp.1
13. Golde, R.H.(Ed.), Lightning. New York: Academic. 1977.
14. Rakov V.A. and Uman M.A. Lightning: Physics and Effects. Cambridge: Cambridge University Press. 2003.
15. Montanyà J., van der Velde O., and Williams E. R. Lightning discharges produced by wind tur-bines//J. Geophys. Res. Atmos. 2014. Vol. 119. Pp.1455–1462 doi:10.1002/2013JD020225.
16. Standler R.B. and Winn W.P. Effects of coronae on electric fields beneath thunderstorms//Quarterly Journal of the Royal Meteorological Society. 1979. Vol. 105. Pp. 285–302.
17. Soula S. and Chauzy S. Multilevel measurement of the electric field underneath a thundercloud. 2. Dynamical evolution of a ground space charge layer//Journal of Geophysical Research. 1991. Vol. 96. Pp. 22327–22336.
18. Soula S. Transfer of electrical space charge from corona between ground and thundercloud: meas-urements and modeling//Journal of Geophysical Research. 1994. Vol. 99. Pp. 10759–10765
19. Bazelyan E.M. and Raizer Yu.P. Lightning physics and lightning protection. Moscow: Nauka. 2001; Bristol: IOP. 2000.
20. Bazelyan E.M. and Drabkin M.M. Scientific and technical basis for preventing lightning strikes to earth bound objects.// In: Power Engineering Society General Meeting, IEEE,13–17 July. 2003. Vol. 4. Pp. 2201–2208.
21. Azarenok B.N. Generation of structured difference grids in two-dimensional nonconvex domains using mappings //Comput. Math. Math. Phys. 2009. Vol. 49. Pp.797–809.
22. Ferzinger J.H. and Peric M. Computational Methods for Fluid Dynamics. Berlin: Springer. 2002.
23. Wesseling P. Principles of Computational Fluid Dynamics. Berlin: Springer. 2001.
24. Тамм И.Е. Основы теории электричества М.: Наука. 1989.[Tamm I.E. Fundamentals of The The-ory of Electricity. Mir. 1979.]
25. Birdsall C.K. and Langdon A.B. Plasma Physics via Computer Simulation. Taylor & Francis. 2004. Chapter 14. Pp. 318−322.
26. Лаврентьев M. A. and Шабат Б.В. Методы теории функций комплексного переменного М.: Наука. 1973.