Mathematical modeling of process occurring in the production of porous composite materials, the formation of coatings

Some operations of technologies for the production of porous composite materials, the thin film formation on the surface of products are considered in the absence of gravity. Mathematical models of melting polymer coating of a set of hollow microspheres due to the heat of the superheated melt between them, the flow of a thin layer of liquid along the surface of the cylinder are given. The solution of the corresponding problems is carried out analytically and numerically using the software package OpenFOAM. Estimates of the dynamics of the interphase boundary, the time of operation, the thickness of the coating were obtained.
In conclusion, recommendations are given, the implementation of which will improve the quality of the resulting materials, formed coatings.

mathematical modeling, porous composite materials, flow of sprayed liquid, film formation

Volume 18, issue 2, 2017 year

Математическое моделирование процессов, протекающих при получении пористых композитных материалов, формировании покрытий

В отсутствие сил тяжести рассмотрены отдельные операции технологий получения пористых композитных материалов, формирования на поверхности изделий тонких пленок. Приведено математическое описание расплавления полимерного покрытия совокупности полых микросфер за счет тепла находящегося между ними перегретого расплава, течения тонкого слоя жидкости по поверхности цилиндра. Решение соответствующих задач осуществляется аналитически и численно с использованием пакета прикладных программ OpenFOAM. Представлены оценки динамики межфазной границы, времени выполнения операции, толщины покрытия.
В заключение даны рекомендации, реализация которых позволит повысить качество получаемых материалов, наносимых покрытий.

математическое моделирование, пористые композитные материалы, течение диспергированной жидкости, формирование пленок

Volume 18, issue 2, 2017 year

1. Mazo A.B., Fedyaev V.L., Khismatullin N.I. Calculation of the dynamics of the interface between contact melting of metals // Model. Nel. percent. in mechanics and heating engineering. Proceedings of the Seminar of the KFTI KFAN USSR. Kazan, 1989. V. 24. P. 66-77.
2. Mazo A.B. Mathematical modeling of processes of hot metal processing. Kazan Foundation Mathematics, 1996. 209 p.
3. Alishaev M.G. Motion of the front of the phase transition after the contact of the solid and liquid phases of the metal // Izv. VUZ. Ferrous metallurgy, 1986. V. 9. P. 35-38.
4. Kozdoba L.A. Methods for solving nonlinear heat conduction problems. Moscow: Science, 1975. 228 p.
5. Polubarinova-Cochina P.Ya. Theory of groundwater movement. Moscow: Science, 1977. 664 p.
6. Yakovlev A.D. Powder paint. Leningrad: Chemistry, 1987. 216 p.
7. Nusselt W. Die Oberfl¨achenkondensation des Wasserdampfes // Zeitschrift VDI. 1916. V. 60. P. 541-546
8. Alekseenko S.V., Nakoryakov V.E., Pokusaev B.G. Wave flow of liquid films. Novosibirsk: Nauka, 1992. 256 p.
9. Huppert H. E. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface // Journal of Fluid Mechanics. 1982. V. 121. P. 43-58.
10. Craster R.V., Matar O.K. Dynamics and stability of thin liquid films // Reviews of modern physics. 2009. V. 81. N. 3. P. 1131-1198.
11. Chinnov E.A., Kabov O.A. Formation of jet streams during gravitational drainage of a wave heated liquid film // Applied Mechanics and Technical Physics. 2003. V. 44. No 5. P. 128-137.
12. Kasatkin A.G. Main processes and apparatus of chemical technology. Moscow: LTD Alliance, 2004. 753 p.
13. Maltsev L.I., Zavarzin D.S. Mathematical simulation of liquid film flows with “dry” spots // Thermophysics and Aeromechanics, 2012, Vol. 19, No. 4. P. 607-614.
14. Alekseenko S.V., Bobylev A.V., Guzanov V.V., Markovich D.M., Kharlamov S.M. Regular waves on vertical falling rivulets at different wetting contact angles // Thermophysics and Aeromechanics, 2010, Vol. 17, No. 3. P. 345-357.
15. Morenko I.V. Calculation of the film flowing over horizontal tube surface // IOP Conf. Series: Journal of Physics: Conf. Series 789 (2017) 012036 doi:10.1088/1742-6596/789/1/012036
16. Meredith K.V., Heather A., Vries J., Xin Y. A numerical model for partially-wetted flow of thin liquid films // Computational Methods in Multiphase Flow. 2011. V.70. P. 239-250.