Heat Transfer in Nonequilibrium Dissociated Nitrogen Jets: Experiments in RF-plasmatron and Numerical Modeling

Experimental and numerical investigations of heat transfer from dissociated nitrogen jet flow to cylindrical flat face water cooling model are presented. Experiments are made in IPG-4 in-duction plasmatron in IPMech RAS for both supersonic and subsonic jet flow conditions at anode power Nap=35 - 65 kW. Stagnation pressure and heat flux to model stagnation point are measured for different materials: copper, stainless steel, nickel, graphite, quartz. Different heating effect due to different surface recombination rates for different materials is demon-strated; qualitative catalytic scale for the tested materials is established. CFD modeling of su-personic underexpanded nonequilibrium jet flow over the model is made for experimental conditions by the codes developed in IM MSU. CFD modeling of subsonic jet flow is made by the codes developed in IPM RAS. Comparison of experimental data and computation results is presented. Estimation of effective recombination coefficient for the tested materials is made on the basis of matching the measured and calculated heat flux values.

RF-plasmatron, dissociated nitrogen, underexpanded jet, subsonic jet, heat transfer, nitrogen atoms catalytic recombination

Volume 17, issue 2, 2016 year

Теплообмен в неравновесных струях диссоциированного азота: эксперимент на ВЧ-плазмотроне и численное моделирование

На индукционном плазмотроне ВГУ-4 проведены эксперименты по теплообмену в недорасширенных сверхзвуковых струях высокоэнтальпийного азота при давлении в барокамере 10.4 гПа. При расходах газа 2.4, 3.6 г/с и мощностях ВЧ-генератора 45, 64 кВт измерены тепловые потоки к поверхности меди, нержавеющей стали, графита МПГ-7 и кварца в критической точке водоохлаждаемой цилиндрической модели с плоским торцом диаметром 20 мм. В этих же режимах измерены давления торможения. Проведены также эксперименты в дозвуковых струях диссоциированного азота, измерены тепловые потоки к поверхности меди, нержавеющей стали, графита и кварца в критической точке водоохлаждаемой цилиндрической модели с плоским торцом диаметром 20 мм, а также скоростные напоры при давлении в барокамере 50 гПа и мощности ВЧ-генератора 35 – 65 кВт. В экспериментах на сверхзвуковых и дозвуковых струях продемонстрирован эффект влияния каталитичности поверхности по отношению к рекомбинации атомов азота на тепловой поток, установлена качественная шкала каталитичности исследованных материалов. Для условий экспериментов в сверхзвуковых и дозвуковых режимах двумя различными численными методами выполнено моделирование течений плазмы азота в разрядном канале плазмотрона и обтекания цилиндрической модели. Проведено сравнение экспериментальных и расчетных данных по давлениям торможения и тепловым потокам к охлаждаемым поверхностям металлов, графита и кварца. Из сопоставления экспериментальных и расчетных данных по тепловым потокам установлена количественная шкала каталитичности исследованных материалов по отношению к гетерогенной рекомбинации атомов азота.

ВЧ-плазмотрон, диссоциированный азот, недорасширенная струя, дозвуковая струя, теплообмен, каталитическая рекомбинация атомов азота

Volume 17, issue 2, 2016 year

1. Kolesnikov A.F., Gordeev A.N., Sakharov V.I. Flow and heat transfer in supersonic jets of air plasma: RF-plasmatron experiments and CFD modeling. Conference "Aerophysics and Physical Mechanics of Classical and Quantum Systems" - APhM-2007, Moscow, Russia. Proceedings. pp. 23-28. (in Russian)
2. Gordeev A.N., Kolesnikov A.F., Sakharov V.I. Flow and heat transfer in underexpanded nonequilibrium jets of an induction plasmatron // Fluid Dynamics. 2011. Vol.46, Issue 4, pp. 623-633
3. Kolesnikov A.F., Gordeev A.N., Sakharov V.I. Heat transfer in under-expanded nonequilibrium carbon dioxide jets: experiment on RF-plasmatron and extrapolation to Mars entry conditions//Physical-Chemical Kinetics in Gas Dynamics. 2014. V.15, iss. 4. http://chemphys.edu.ru/issues/2014-15-4/articles/238/
4. Gordeev A.N., Kolesnikov A.F., Sakharov V.I. Flow and heat transfer in underexpanded nonequilibrium jets of carbon dioxide: Experiment and numerical simulation // High Temperature. 2015. Vol. 53. No.2. pp. 272–278.
5. Kolesnikov A.F., Gordeev A.N., Konov A.N., Lukomskii I.V., Mysova V. M., Rulev Yu. K. Experi-mental study of heat transfer to metals and quartz surfaces in underexpanded dissociated nitrogen jets in RF-plasmatron//Physical-Chemical Kinetics in Gas Dynamics. 2015. V.16, iss. 2. http://chemphys.edu.ru/issues/2015-16-2/articles/537/
6. Gordeev A.N., Kolesnikov A.F. Induction plasmatrons of IPG series // Actual problems in mechanics. Physical-chemical mechanics of fluids and gases. M., Nauka publ., 2010. pp.151-177. (in Russian)
7. Vasil'evskii S.A., Kolesnikov A.F., Yakushin M.I. Determination of the effective probabilities of the heterogeneous recombination of atoms when heat flow is influenced by gas-phase reactions // High Temperature. 1991. Vol. 29. No.3. pp. 411-419.
8. Afonina N.E., Gromov V.G., Sakharov V. I. HIGHTEMP technique of high temperature gas flows nu-merical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Space Vehicles. Cologne, Germany, 2004. SP 563. Noordwijk: ESTEC. 2004. P. 323-328.
9. Gurvich L.V., Veyts I.V., Medvedev V.A. et al. Thermodynamic properties of individual substances / Ed. Glushko V.P. M.: Nauka publ., 1978. Vol. 1. (in Russian)
10. Godunov S.K., Zabrodin A.V., Ivanov M.I. et al. Numerical solution of multidimensional problems of gas dynamics. M.: Nauka publ., 1976. (in Russian)
11. Afonina N.E., Vasil'evskii S.A., Gromov V.G., Kolesnikov A.F., Pershin I.S., Sakharov V.I., Yakushin M.I. Flow and Heat Transfer in Underexpanded Air Jets Issuing from the Sonic Nozzle of a Plasma Generator. // Fluid Dynamics. 2002. Vol.37, Issue 5, pp. 803–814.
12. Sakharov V.I. Numerical simulation of thermally and chemically nonequilibrium flows and heat transfer in underexpanded induction plasmatron jets // Fluid Dynamics. 2007. Vol.42, Issue 6, pp. 1007-1016.
13. Vasil'evskii S.A., Kolesnikov A.F. Numerical Simulation of Equilibrium Induction Plasma Flows in a Cylindrical Plasmatron Channel // Fluid Dynamics. 2000. Vol.35, Issue 5, pp. 769-777.
14. Ibragimova L.B., Smekhov G.D., Shatalov O.P. Dissociation rate constants of diatomic molecules under thermal equilibrium conditions // Fluid Dynamics. 1999. Vol.34, Issue 1, pp. 153-157.
15. Losev S.A., Makarov V.N., Pogosbekyan M.Yu. Model of the physico-chemical kinetics behind the front of a very intense shock wave in air // Fluid Dynamics. 1995. Vol.30, Issue 2, pp. 299-309.
16. Park C. Review of chemical-kinetic problems of future NASA missions, Earth Entries // J. Thermophys and Heat Transfer. 1993. V.7. No.3. P. 385-398.
17. Losev S.A., Makarov V.N., Pogosbekyan M.Ju., Shatalov O.P., Nikol’sky V.S. , Thermochemical non-equilibrium kinetic models in strong shock waves on air // AIAA Paper. 1990. № 1994. 13p.
18. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular Theory of Gases and Liquids. Wiley, New York, 1967.
19. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. McGraw-Hill, N. Y.: 1977. 688 p.
20. Afonina N.E.,Gromov V.G. Thermochemical nonequilibrium computations for a MARS express probe // Proc. 3rd Europ. Symp. Aerothermodynam. Space Vehicles, ESTEC, Noordwijk, The Netherland. 1998. P. 179-186.
21. Gordeev O.A., Kalinin A.P., Komov A.L. et al. Interaction potentials, elastic cross-sections, collision integrals for air components up to the temperature 20000 K. Reviews on thermophysical properties / TPhC. Moscow, IVTAN. 1985. No.5 (55). (in Russian)
22. Kolesnikov A.F. The Aerothermodynamic Simulation in Sub- and Supersonic High-Enthalpy Jets: Ex-periment and Theory // Proc. 2nd European Symposium on Aerothermodynamics for Space Vehicles. ESA Publication Division, Noordwijk, The Netherlands. ESA SP-367. 1995. pp. 583-590.
23. Kolesnikov A.F. Conditions of simulation of stagnation point heat transfer from a high-enthalpy flow // Fluid Dynamics. 1993. Vol.28, Issue 1, pp. 131-137.
24. Kolesnikov A.F. The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows: Application and Validation. AIAA Paper 2000-2515, 2000.
25. Kolesnikov A.F. Local similarity conditions of the thermochemical interaction between high-enthalpy gas flows and an indestructible surface // High Temperature. 2014. Vol. 52. No.1. С. 110-116.
26. Kolesnikov A.F., Pershin I.S., Vasil’evskii S.A., Yakushin M.I. Study of Quartz Surface Catalycity in Dissociated Carbon Dioxide Subsonic Flows // J. Spacecraft and Rockets. 2000. Vol.37. No.5. pp.573 – 579.
27. Vasil’evskii S.A., Kolesnikov A.F., Yakushin M.I. Mathematical Models for Plasma and Gas Flows in Induction Plasmatrons // Molecular Physics and Hypersonic Flows. Ed. M. Capitelli. NATO ASI Series, Kluwer. 1996. Vol.482, pp.495-504.
28. Kolesnikov A.F., Pershin I.S., Vasil’evskii S.A. Predicting Catalycity of Si-Based Coating and Stagna-tion Point Heat Transfer in High-Enthalpy CO2 Subsonic Flows for the Mars Entry Conditions // Proc. Int. Workshop ‘Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science’. Ed. A. Wilson. ESA Publication Division, ESA SP-544. 2004. pp.77-83.
29. Kolesnikov A., Gordeev A., Vasil’evskii S., Vérant J.L. Technical Approach and Validation of Reentry Heating Simulation for the Pre-X and EXPERT Vehicles Using the IPG-4 Plasmatron // Proc. EUCASS (CD-ROM). Moscow, Russia. 2005.
30. Kolesnikov A., Gordeev A., Vasil’evskii S., Vérant J.L. Predicting Catalytic Properties of SiC Material for the Pre-X Vehicle Re-Entry Conditions // Proc. 2nd EUCASS European Conference for Aero-Space Sciences (CD-ROM). Brussels, Belgium, 2007.
31. Vasil’evskii S.A., Kolesnikov A.F. Numerical modeling of flow and heat transfer for the induction plasma in the RF-plasmatron // Encyclopedia of Low-Temperature Plasma. Series B. Vol. VII-1. Part 2. Moscow, 2008. pp. 220-234. (in Russian)
32. Patankar S.V., Spalding D.B. Heat and Mass Transfer in Boundary Layers. Intertext Books, London. 1970.