Radiative-convective heating of martian space vehicles

Three dimensional numerical simulation data on radiative aerothermodynamics of Martian entry probes Pathfinder, Exomars and Mars Science Laboratory (MSL) are presented and analyzed. It is shown that integral radiative heating of leeward surface of the entry probes exceeds corresponding convective heating. Review of previously published works dedicated to investigation of convective and radiative heating of space vehicles in Martian and Venus atmosphere as well as the description of used in the given paper calculation model are presented.

Radiative gas dynamics, re-entry space vehicles, Mars

Volume 14, issue 2, 2013 year

Радиационно-конвективный нагрев марсианских зондов

Приведена и анализируется вычислительная модель радиационной аэротермодинамики марсианских космических аппаратов (КА) Pathfinder, Exomars и Mars Science Laboratory (MSL). Показано, что интегральный радиационный нагрев подветренной поверхности указанных спускаемых аппаратов превосходит соответствующий конвективный нагрев и составляет величину порядка нескольких Вт/см2. Представлен обзор работ, посвященных проблеме аэротермодинамики космических аппаратов, предназначенных для исследования Марса и Венеры.

Радиационная газовая динамика, спускаемые космические аппараты, Марс

Volume 14, issue 2, 2013 year

1. Shang J.S., Surzhikov S.T. Nonequilibrium radiative hypersonic
flow simulation. Progress in Aerospace Sciences.
2012. Vol. 53. pp.46−65.
2. Martin J. Atmospheric reentry. An Introduction to its Science
and Engineering. Prentice-Hall, Inc., Englewood Cliffs
N.J. 1962.
3. Gruszczynski J.S., Warren W.R., Jr. Experimental Heat-
Transfer Studies of Hypervelocity Flight in Planetary Atmospheres.
AIAA J. 1964, Vol.2. No. 9. pp.1542−1550.
4. James C.S. Experimental Study of Radiative Transport from
Hot Gases Simulating in Composition the Atmospheres of
Mars and Venus. AIAA J. 1964, Vol.2. No. 3. pp.470-475.
5. Faibairn A.R. Spectrum of Shock-Heated Gases Simulating
the Venus Atmosphere. AIAA J. 1964, Vol.2. No. 6.
6. Thomas G.M., Menard W.A. Experimental Measurements
of Nonequilibrium and Equilibrium Radiation from Planetary
Atmospheres. AIAA J. 1966. Vol.4. No.2. pp.227-237.
7. Freeman G.N., Oliver C.C. High-Temperature Thermodynamic
and Transport Properties of Planetary CO2-N2 Atmospheres.
AIAA J. 1970. Vol.8. No.9. pp.1687−1693.
8. Kirk D.B., Intrieri P.F., Seiff A. Aerodynamic Behaviour of
the Viking Entry Vehicle: Ground Test and Flight Results.
J. Spacecraft. 1978. Vol.15. No.4. pp.208-212.
9. Chen Y.K., Henline W.D., Stewart D.A., Candler G.V. Navier-
Stokes Solutions with Surface Catalysis for Martian
Atmosphere Entry. JSR. 1993. Vol.30. No.1 pp.32−42.
10. Tauber M.E., Yang L., Paterson J. Flat Surface Heat-
Transfer Correlations for Martian Entry. JSR. 1993. Vol.30.
No.2. pp.164−169.
11. Park,C., Nonequilibrium Hypersonic Aerothermo-dynamics.
Willey-Interscience Publication, J. Wiley & Sons. New-
York, 1990.
12. Tauber M., Sutton K. Stagnation-Point Radiative Heating
Relations for Earth and Mars Entries. J. Spacecraft. 1991.
Vol.28. No.1. pp.40−42.
13. Hassan B., Candler G., Olynick D. Thermo-Chemical Nonequilibrium
Effects on the Aerothermodynamics of Aerobraking
Vehicles. JSR. 1993. Vol.30. No.6. pp.647−655.
14. Tauber M., Palmer G., Earth Atmospheric Entry Studies for
Manned Mars Mission. JTHT. 1992. Vol.6. No.2.
15. Chen Y.K., Henline W.D., Tauber M.E. Mart Pathfinder
Trajectory Based Heating and Ablation Calculations. JSR.
1995. Vol.32. No.2. pp.225−230.
16. Hartung L. Development of a Nonequilibrium Radiative
Heating Prediction Method for Coupled Flowfield Solutions.
JTHT. 1992. Vol.6. No.6. pp.618−625.
17. Park C., Yoon S. Fully Coupled Implicit Method for Thermochemical
Nonequilibrium Air at Suborbital Flight
Speeds. J. Spacecraft. 1992. Vol. 28. No.1. pp.31−39.
18. Henline W., Tauber M. Trajectory-Based Heating Analysis
for the European Space Agency/Rosetta Earth Return Vehicle.
JSR. 1994. Vol.31. No.3. pp.421−428.
19. Greendyke R., Gnoffo P., Wes Lawrence R. Calculated
Electron Number Density Profiles for Aeroassist Flight Experiment.
JSR. 1992. Vol.29. No.5. pp.621−626.
20. Gnoffo P., Price J., Braun R. Computation of Near-Wake,
Aerobrake Flowfields. JSR. 1992. Vol.29. No.2.
21. Gupta R., Lee K., Moss J., Sutton K. Viscous Shock-Layer
Solution with Coupled Radiation and Ablation for Earth Entry.
JSR. 1992. Vol.29. No.2. pp.173−181.
22. Walter R. Recent Advances in Computational Analysis of
Hypersonic Vehicles. Combustion, Explosion, and Shock
Waves. 1993. Vol.29. No.3. pp.316−319.
23. Mitcheltree R.A., Gnoffo P.A. Wake Flow About the Mart
Pathfinder Entry Vehicle. Journal of Spacecraft and Rockets.
1995. Vol.32. No.5. pp.771−775.
24. Milos F.S., Chen Y.K., Gongdon W.M. et al. Mars Pathfinder
Entry Temperature Data, Aerothermal Heating, and
Heatshield Material Response. JSR. 1999. Vol.36. No.3.
25. Paterna D., Monti R., et al. Experimental and numerical
investigation of martian atmosphere entry. JSR. 2002. V.
39, N. 2. pp.227−236.
26. Edquist K.T. Afterbody Heating Predictions for a Mars
Science Laboratory Entry Vehicle. AIAA paper 2005-4817,
2005, 12 p.
27. Bose D., Wright M. Uncertainty Analysis of Laminar Aeroheating
Predictions for Mars Entries. AIAA paper 2005-
4682. 2005. 11 p.
28. Hollis B.R., Collier A.S. Turbulent Aeroheating Testing of
Mars Science Laboratory Entry Vehicle in Perfect-Gas Nitrogen.
AIAA Paper 2007-1208. 2007. 20 p.
29. Hollis B.R., Collier A.S. Turbulent Aeroheating Testing of
Mars Science Laboratory Entry Vehicle. JSR. 2008. Vol.
45. No.3. pp.417−427.
30. Grinstead J.H., Wright M.J., Bogdanoff D.W., Allen G.A.
Shock Radiation Measurements for Mars Aerocapture Radiation
Heating Analysis. JTHT. 2009. Vol.23. No.2.
31. Surzhikov S., Omaly P. MSRO convective and radiative
heating. AIAA Paper 08-1274. 2008. 43 p.
32. Surzhikov S.T., Omaly P. Radiative Gas Dynamics of Martian
Space Vehicles. AIAA paper 2011- 0452. 2011. p.28.
33. Surzhikov S.T. Comparative Analysis of Radiative Aerothermodynamics
of Martian Entry Probes. AIAA paper
2012-2867. 2012. p. 38.
34. Gromov V.G., Surzhikov S.T., Charbonnier J.-M. Convective
and Radiative Heating of a Martian Space Vehicle Base
Surface. 4th European Symp. on Aerothermodynamics for
Space Vehicles. Capua, Italy. ESA SP-487. 2002. pp. 265−
35. Surzhikov S.T. 2D CFD/RGD Model of Space Vehicles.
Proc. of the Int. Workshop on Radiation of High Temperature
Gases in Atmospheric Entry. October 2003, Lisbon,
Portugal. European Space Agency, SP-533, 2003,
36. Surzhikov S.T. TC3: Convective and Radiative Heating of
MSRO For Simplest Kinetic Models. Proc. HTGR Workshop
ESA SP-583. 2005. pp.55−62.
37. Surzhikov S.T. TC3: Convective and Radiative Heating of
MSRO, Predicted by Different Kinetic Models. Proc. 2nd
HTGR Workshop. ESA SP-629. 2006. (CD-ROM).
38. Surzhikov S.T. Three-Dimensional Computer Model of
Nonequilibrium Aerophysics of the Spacecraft Entering in
the Martian Atmosphere. Fluid Dynamics. 2011. Vol. 46.
No.3. pp.490−403.
39. Surzhikov S.T. Random models of Atomic Lines for Calculation
of Radiative Heat Transfer in Laser Supported Waves.
AIAA paper 97-2367. 1997. 11 p.
40. Surzhikov S.T. Computing System for Mathematical Simulation
of Selective Radiation Transfer. AIAA paper 00-
2369. 2000. 15 p.
41. Gurvich L.V., Veitc I.V., Medvedev V.A. et al. Thermodynamic
Properties of Individual Substances. HandBook.
Vols.1-4. Moscow: Nauka. 1978.
42. Surzhikov S.T. The Effect of Non-Equilibrium Dissociation
on Radiative Heating of Entering Space Vehicle. AIAA paper
2012-0146. 21 p.
43. Bird R., Stewart W., Lightfoot E. Transport Phenomena.
John Wiley & Sons. Inc. 1965.
44. Wilke C.R. Diffusional Properties of Multicomponent Gases.
Chem. Engn. Progr. 1950. Vol.46. pp.95−104.
45. Svehla R.A. Estimated Viscosities and Thermal Conductivities
of Gases at High Temperatures. NASA TR-R-132. 1962.
26 P.
46. Surzhikov S., Omaly P. Radiative Gasdynamics of Exomars
at Angle of Attack. Proc. of the 4th European HTGR Workshop.
12-15 October. Lausanne, Switzerland. Available on
CD and www-page of European Space Agency.
47. Surzhikov S.T., Shang J.S. Radiative Aerothermodynamics
of Entry Probes in Martian and Earth Atmospheres. 7th European
Aerothermodynamics Symposium on Space Vehicles.
9-12 May 2011. Bruges, Belgium. 8 p.
48. Surzhikov S.T. Convective and Radiative Heating of Martian
Space Vehicles. 4th European Conference for Aerospace
Sciences (EUCASS). 2011. 8 p. (Proceedings on CD).
49. Chatwood F.M., Gnoffo P.A. User’s Manual for the Langley
Aerothermodynamic Upwind Algorithm (LAURA).
NASA TM-4674, Apr. 1996.
50. Park C., Howe J.T., Jaffe R.L. and Candler G.V. Review of
Chemical-Kinetic Problems of Future NASA Missions, II:
Mars Entries. J. of Thermophysics and Heat Transfer. 1994.
Vol.8, No.1, pp.9−23.
51. Суржиков С.Т. Тепловое излучение газов и плазмы. М.:
Изд-во МГТУ им. Н.Э.Баумана. 2004. 543 с.
52. Суржиков С.Т. Двумерная радиационно-газодинами-
ческая модель аэрофизики спускаемых космических ап-
паратов. В кн.: Актуальные проблемы механики. Меха-
ника жидкости, газа и плазмы. - М.: Наука. 2008.
53. Суржиков С.Т. Трехмерная радиационно-газодинами-
ческая модель аэрофизики спускаемых космических ап-
паратов. В кн.: Актуальные проблемы механики. Физи-
ко-химическая механика жидкостей и газов. - М.: Наука.
2010. С. 25−124.
54. Суржиков С.Т. Расчет обтекания модели кос-
мического аппарата MSRO с использованием кодов
NERAT-2D и NERAT-3D // Физико-химическая кинети-
ка в газовой динамике. 2010. T.9.
55. Суржиков С.Т. Трехмерная вычислительная модель
аэротермодинамики спускаемых космических аппаратов
// Физико-химическая кинетика в газовой динамике.
2010. T.9. http://www.chemphys.edu.ru/pdf/2010-01-12-