Application of method of laser-induced incandescence to analysis of optical properties of growing particles

The evidence of the change of complex refractive index function E(m) of carbon and iron nanoparticles as a function of their size was found in two-color time resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed during acetylene pyrolisis behind a shock wave and iron particles were synthesized by pulse Kr-F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were determined through the fitting of two independently measured values of particle heat up temperature, measured by two color pyrometry and from known laser pulse energy and E(m) variation. Small carbon particles of about 1-14 nm in diameter had a low value of E(m) ~ 0.05÷0.07 which tends to increase up to a value of 0.2÷0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E(m) rise from ~ 0.1 for particles 1÷3 nm in diameter up to ~ 0.2 for particles > 12 nm in diameter.

refractive index, nanoparticles, laser-induced incondensation, dimensional effect

Применение метода лазерно-индуцированной инкандесценции для анализа оптических свойств растущих наночастиц

Исследована зависимость значения функции коэффициента преломления E(m) от размера углеродных и железных наночастиц методом двухлучевой пирометрии и время-разрешенной лазерно-индуцированной инкандесценции. Рост углеродных наночастиц был исследован при пиролизе 3% ацетилена в аргоне за отраженными ударными волнами. Железные наночастицы были синтезированы при импульсной УФ фотодиссоциации Fe(CO)5 в кварцевом реакторе при комнатной температуре. Величины функции коэффициента преломления наночастиц были найдены при сравнении двух значений температуры максимального нагрева наночастиц, определенных методом двухлучевой пирометрии и при помощи модели ЛИИ, с использованием известной энергии лазерного импульса. Установлено, что маленькие углеродные наночастицы диаметром 1÷14 нм имеют низкое значение E(m) ~ 0.05÷0.07, которое увеличивается до значений 0.2÷0.25 в процессе роста наночастиц до 20 нм. Аналогичная зависимость функции коэффициента преломления от размера была найдена для железных наночастиц, при этом наблюдалось увеличение значений E(m) от ~ 0.1 для наночастиц диаметром 1÷3 нм до значений ~ 0.2 для наночастиц > 12 нм в диаметре.

коэффициент преломления, наночастицы, лазерно-индуцированная инкандесценция, размерный эффект

1. Vander Wal R.L., Dietrich D.L. Laser-induced incandescence
applied to droplet combustion // Appl. Opt. V.34.
1995. P. 1103.
2. Ni T., Pinson J.A., Gupta S., Santoro R.J. Two-dimensional
imaging of soot volume fraction by the use of laser-induced
incandescence // Appl. Opt. V. 34. 1995. P. 7083.
3. Snelling D.R., Smallwood G.J., Liu F., Gülder Ö. L., Bachalo
W.D. A calibration-independent laser-induced incandescence
technique for soot measurement by detecting absolute
light intensity // Appl. Opt. V.44. №31. 2005. P. 6773.
4. Choi M.Y., Jensen K.A. Calibration and correction of laserinduced
incandescence for soot volume fraction measurements
// Comb. and Flame. V.112. 1998. P. 485.
5. Michelsen H.A. Understanding and predicting the temporal
response of laser-induced incandescence from carbonaceous
particles // J. Chem. Phys. V. 118. 2003. P. 7012.
6. Haynes B.S. Wagner H.Gg. Soot formation // Progr. Energy
Combust. Sci. V.7. 1981. P. 229.
7. Hendy S.C., Awasthi A., Schebarchov D. Molecular dynamics
simulations of nanoparticles // Int. J. Nanotechnology. V.
6. 2009. P. 274.
8. Ding F., Bolton K., Rosen A. Iron-carbide cluster thermal
dynamics for catalyzed carbon nanotube growth // J. Vac.
Sci. Technol. A V. 22. №4. 2004. P. 1471.
9. Ding F., Bolton K., Rosen A. Size dependence of the coalescence
and melting of iron clusters: A moleculardynamics
study // Phys. Review B. V. 70. №7. 2004. P.
10. Лихачев В.Н., Астахова Т.Ю., Виноградов Г.А., Алымов
М.И. Аномальная теплоемкость наночастиц // Химиче-
ская физика. Т. 26. №1. 2007. С. 89.
11. Schulz Ch., Kock B., Hofmann M., Michelsen H., Will S.,
Bougie B., Suntz R., Smallwood G. Laser-induced incandescence:
resent trends and current questions // Appl. Phys.
B. V. 83. 2006. P. 333.
12. Minutolo P., Gambi G., D’Alessio A. Properties of carbonaceous
nanoparticles in flat premixed C2H4/air flames with
C/O ranging from 0.4 to soot appearance limit // Proc. of the
Combustion Institute. V. 27. 1998. P. 1461.
13. Emelianov A., Eremin A., Jander H., Wagner H.Gg.,
Borchers Ch. Spectral and structural properties of carbon
nanoparticle forming in C3O2 and C2H2 pyrolysis behind
shock waves // Proc. of the Combustion Institute. V. 29.
2002. P. 2351.
14. Basile G., Rolando A., D’Alessio A., D’Anna A., Minutolo
P. Coagulation and carbonization processes in slightly sooting
premixed flames // Proc. of the Combustion Institute. V.
29. 2002. P. 2391.
15. D’Anna A, Rolando A., Allouis C., Minutolo P., D’Alessio
A. Nano-organic carbon and soot particle measurements in a
laminar ethylene diffusion flame // Proc. of the Combustion
Institute. V. 30. 2005. P. 1449.
16. Wang H., Formation of nascent soot and other condensedphase
materials in flames // Proc. of the Combustion Institute.
V. 33. 2011. (in print).
17. Bladh H., Johnsson J., Olofsson N.-E., Bohlin A.,
Bengtsson P.-E. Optical soot characterization using twocolor
laser induced-incandescence (2C-LII) in the soot
growth region of a premixed flat flame // Proc. of the Combustion
Institute. V. 33. 2011. ( in print).
18. Starke R., Kock B., Roth P. Nano-particle sizing by laserinduced
incandescence (LII) in a Shock Wave Reactor //
Shock Waves. V. 12. 2003. P. 351.
19. Woiki D., Giesen A., Roth P. Time-resolved laser-induced
incandescence for soot particle sizing during acetylene
pyrolysis behind shock waves // Proc. of the Combustion
Institute. V. 28. 2000. P. 2531.
20. Starke R., Kock B., Roth P., Eremin A., Gurentsov E.,
Shumova V., Ziborov V. Shock wave induced carbon
particle formation from CCl4 and C3O2 observed by laser
extinction and by laser-induced incandescence (LII) //
Comb. and Flame. V. 132. 2003. P. 77.
21. Eremin A.V., Gurentsov E.V., Hofmann M., Kock B.,
Schulz Ch. TR LII for sizing of carbon particle forming at
room temperature // Appl. Phys. B. V. 83. 2006. P. 449.
22. Eremin A.V., Gurentsov E.V., Kock B., Schulz Ch.
Influence of the bath gas on the condensation of
supersaturated iron atom vapor at room temperature // J.
Phys. D: Applied Physics. V. 41. №5. 2008. P. 055203.
23. Snelling D., Liu F., Smallwood G., Gülder Ö. Determination
of the soot absorption function and thermal accommodation
coefficient using low fluence LII in a laminar coflow
ethylene diffusion flame Comb. and Flame. V. 136. 2004. P.
24. Kock B., Kayan C., Knipping J., Ortner H.R., Roth P.
Comparison of LII and TEM sizing during synthesis of iron
particle chains // Proc. of the Combustion Institute. V. 30.
2004. P. 1689.
25. Liu F., Daun K. J., Snelling D.R., Smallwood G.J. Heat
conduction from a spherical nano-particle: status of
modeling heat conduction in laser-induced incandescence //
Appl. Phys. B. V. 83. 2006. P. 355.
26. Michelsen H.A., Liu F., Kock B., et al. Modelling laserinduced
incandescence of soot: a summary and comparison
of LII models // Appl. Phys. B. V. 87. 2007. P. 503.
27. Smallwood G.J., Snelling D.R., Liu F., Gülder Ö.L. Clouds
Over Soot Evaporation: Errors in Modeling Laser-Induced
Incandescence of Soot // Transactions of the ASME. V. 123.
2001. P. 814.
28. Roth P., Filippov A.V. In-situ characterization of ultrafine
particles by laser-induced incandescence: sizing and particle
structure determination // J. Aerosol. Sci. V. 27.№1. 1996.
P. 95.
29. Filippov A.V., Markus M.W., Roth P. In-situ characterization
of ultrafine particles by laser-induced incandescence:
sizing and particle structure determination // J. Aerosol Sci.
V. 30. №1. 1999. P. 71.
30. Гуренцов Е.В., Еремин А.В. Измерение размеров
углеродных и железных наночастиц методом лазерно-
индуцированной инкандесценции // TBT. 2011 (в
31. D’Alessio A., D’Anna A., Minutolo P., Sgro L.A., Violi A.
On the relevance of surface growth in soot formation in
premixed flames // Proc. of the Combustion Institute. V. 28.
2000. P. 2547.
32. De Iuliis S., Migliorini F., Cignoli F., Zizak G. Peak soot
temperature in laser-induced incandescence measurements //
Appl. Phys. B. V. 83. 2006. P. 397.
33. Jiang Q., Chen Z.P. Thermodynamic phase stabilities of
nanocarbon // Carbon. V. 44. №1. 2006. P. 79.