Трехмерная вычислительная модель аэротермодинамики спускаемых космических аппаратов

Three dimensional model of aerothermodynamics of entering space vehicles

Three-dimensional computational fluid dynamics (CFD) model of aerothermodynamics of descent space vehicles is described. The model is realized with regular multi-blocks curvilinear calculation grids in computer code NERAT-3D.
Numerical simulation results for convective and radiative heating of model of space vehicle studied in European scientific program EXOMARS of Mars exploration are presented. Examples of 3D calculations of flow fields around model of space vehicle at angle of attack are presented and analyzed, as well as the influence on these results of grid topologies

Том 9, 2010 год

Дано краткое описание двухмерной и трехмерной вычислительной модели аэротермодинамики спускаемых космических аппаратов. Модели реализованы в компьютерных кодах NERAT-2D и NERAT-3D на структурированных многоблочных криволинейных сетках. Представлены расчетные данные по конвективному и радиационному нагреву поверхности перспективного космического аппарата EXOMARS, предназначенного для полета на Марс. Приведены примеры трехмерных расчетов аэротермодинамики космического аппарата EXOMARS, обтекаемого под углом атаки. Дан анализ влияния используемых расчетных сеток

космический аппарат, космический аппарат, аэротермодинамика, вычислительная модель, конвективный и радиационный нагрев

Том 9, 2010 год

1. Hollis B.R., Perkins J.N. High-Enthalpy Aerothermodynamics of a Mars Entry Vehicle. Part 2: Computational Results. Journal of Spacecraft and Rockets. 1997. Vol.34. № 4. pp.457−463.
2. Gupta R.N., Lee K.P. An Aerothermal Study of MESUR Pathfinder Aeroshell. AIAA 94-2025. 1994.41 p.
3. Milos F.S., Chen Y.K., Gongdon W.M., et al. Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material Response. Journal of Spacecraft and Rockets. 1999. Vol.36. № 3. pp.380−391.
4. Park C., Howe, J.T., Jaffe R.L. and Candler, G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. J. of Thermophysics and Heat Transfer, 1994, Vol.8, № 1, pp.9−23.
5. Surzhikov S.T. 2D CFD/RGD Model of Space Vehicles. Proc. of the Int. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. October 2003, Lisbon, Portugal. European Space Agency, SP-533, 2003, pp.95−102.
6. Surzhikov S.T. Computing System for Solving Radiative Gasdynamic Problems of Entry and Re-Entry Space Vehicles. Ibid., pp.111−117.
7. Dieudonne W., Spel M., Charbonnier J.M. Modeling Sensitivity Analysis for TC3. Ibid., pp.161−170.
8. Rini P., Magin T., Degrez G., Fletcher D. Numerical Simulation Of Non Equilibrium Hypersonic CO2 Flows For Mars Entry Applications. Ibid., pp.171-180.
9. Rouzaud O., Hylkema J., Verant J.-L., Tesse L. Development of the PARAON Platform And ONERA Numerical Solvers For Gas Radiation. Ibid., pp.181−188.
10. Surzhikov S.T. TC3: Convective and Radiative Heating of MSRO for Simplest Kinetic Models. Proceedings of the International Workshop on Radiation of High Temperature Gases in Atmospheric Entry. Part II.30 Sept.-1 Oct., 2005. Porquerolles. France.(ESA SP-583, May 2005, pp.55−62)
11. Surzhikov S.T. TC3: Convective and Radiative Heating of MSRO, Predicted by Different Kinetic Models. Proceedings of the Second International Workshop on Radiation of High Temperature Gases in Atmospheric Entry. 6-8 Sept., 2006. Rome. Italy.(ESA SP-629, November 2006, on CD)
12. Omaly P., Rouzaud O., Surzhikov S.T. Radiation Heat Transfer Models for Re-Entry Aerothermodynamics. 25th Int. Symp. On Rarefied Gas Dynamics. 2006. P.909-914.
13. Gurvich, L.V., Veitc, I.V., Medvedev, V.A. et al., Thermodynamic Properties of Individual Substances. HandBook, Vols.1-4, Moscow: «Nauka», 1978 (in Russian).
14. Bird R.B., Stewart W.E., Lightfoot E.N. Transport Phenomena. New-York. John Wiley & Sons, Inc. 1965.
15. Svehla R.A. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. NASA TR-R-132, 1962, 26 P.
16. Edwards, J.R., Liou, M.-S. Low-Diffusion Flux-Splitting Methods for Flow at all Speeds. AIAA Journal, 1998, V.36, № 9, pp.1610−1617.
17. Ibragimova L.B. The Recommended Values of Gas-Phase Chemical Reactions Rate Constants in the Atomic System N-C-O. Part I and II. Preprint No. 29-97 and 30-97, Institute of Mechanics, Moscow State University, 1997.
18. McKenzie R.L. An Estimate of the Chemical Kinetics behind Normal Shock Wave in Mixtures of Carbon Dioxide and Nitrogen for Candidates Typical of Mars Entry. NASA TN D-3287, Jan. 1966.
19. Marrone P.V., Treanor C.E. Chemical Relaxation with Preferential Dissociation from Excited Vibrational Levels. The Physics of Fluids, V. 6, № 9. pp.1215−1221, 1963.