This paper presents the results of measurements of heat flux to a cold copper (high catalytic) surface and dynamic pressures in subsonic jets of dissociated air in a wide range of parameters. The experiments were carried out on a 100-kilowatt VGU-4 high-frequency plasmatron. Using the measured values of heat flux to a cold copper calorimeter and dynamic pressures as input data, the enthalpy values at the outer edge of the boundary layer he and the characteristic flow velocity Vc were determined on the jet axis using the Alpha, Beta and Gamma computer programs. The results obtained can be used to solve problems related to direct local modeling of the aerodynamic heating of re-entry vehicles.
Исследование теплообмена в дозвуковых струях диссоциированного воздуха ВЧ-плазмотрона ВГУ-4
Приведены результаты измерений тепловых потоков к холодной медной (высококаталитической) поверхности и скоростных напоров в дозвуковых струях диссоциированного воздуха в широком диапазоне параметров. Эксперименты проведены на 100-киловаттном ВЧ-плазмотроне ВГУ-4. С использованием измеренных значений тепловых потоков к холодному медному калориметру и динамических давлений как входных данных, с помощью компьютерных программ Alpha, Beta и Gamma на оси струи определены значения энтальпии на внешней границе пограничного слоя he и характерной скорости потока Vc. Полученные результаты могут использоваться для решения задач, связанных с прямым локальным моделированием аэродинамического нагрева поверхности возвращаемого аппарата.
1. Kolesnikov A.F., Shchelokov S.L. Analysis of the simulation conditions of the aerodynamic heating in subsonic high-enthalpy air jets from the VGU-4 HF plasmatron, Fluid Dynamics, 2021, vol. 56, no. 2, pp. 236–241. https://doi.org/10.1134/S0015462821020063 2. Anderson L.A., Sheldahl R.E., Experiments with two flow-swallowing enthalpy probes in high-energy supersonic streams, AIAA Journal, 1971, vol. 9, no. 9, pp. 1804-1810. 3. Kolesnikov A.F., Gordeev A.N., Vasil'evskii S.A., Tepteeva E.S., The effect of the geometry of the discharge channel in a high-frequency plasmatron on heat transfer in high-enthalpy subsonic air jets, High Temperature, 2019, vol. 57, no. 4, pp. 469 - 476. https://doi.org/10.1134/S0018151X19040114 4. Schouler M., Prévereaud Y., Mieussens L., IXV post-flight reconstruction and analysis of the aerothermodynamic measurements along the rarefied portion of the reentry trajectory, International Journal of Heat and Mass Transfer, 2021, Vol. 178, no. 121582. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121582 5. Gordeev A.N., Kolesnikov A.F., New regimes of plasma flows and heat transfer in the IPG-4 plasmatron, Physical-Chemical Kinetics in Gas Dynamics, 2008, Vol. 7. [In Russian] http://chemphys.edu.ru/issues/2008-7/articles/453/ 6. Gordeev A.N., Kolesnikov A.F., High-frequency induction plasmatrons of the VGU series, Actual problems in mechanics: Physical and chemical mechanics of liquids and gases. Moscow: Nauka publ., 2010, pp. 151-177 [In Russian] 7. ASTM E422-05(2016). Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter, ASTM International, West Conshohocken, PA. 2016. 8. Polezhaev Yu.V., Yurevich F.B., Heat protection, Moscow, Energiya publ., 1976. 392 p. [In Russian] 9. Physics and technics of low temperature plasma / Dresvin S.V., Donskoi A.V., Goldfarb V.M., Klubnikin V.S. Moscow: Atomizdat publ., 1972. [In Russian] 10. Vasil'evskii S.A., Kolesnikov A.F., Numerical simulation of flow and heat transfer in the inductively coupled plasma of the HF-plasmatron, Encyclopedia of low temperature plasma. Series B. Volume VII-1. Part 2. Moscow: Yanus-K publ. 2008, pp. 220–234. [In Russian] 11. Kolesnikov A.F., Yakushin M.I., On the determination of effective probabilities of heterogeneous recombination of atoms by heat flux to a surface from the dissociated air flow, Mathematical Models and Computer Simulations, 1989, Vol. 1, no. 3, pp. 44–60. [In Russian] 12. Vasil'evskii S.A., Kolesnikov A.F., Effect of flow swirling on the subsonic air jet in the VGU-4 HF plasmatron, Fluid dynamics, 2024, Vol. 59, no. 5, pp. 1129–1136.