Reynolds Analogy in the Boundary layer with ex-ternal impact
The paper considers various methods of impacts on the boundary layers that allow controlling the Reynolds analogy factor. The results of studying the effect of heat transfer enhancement, imposition of large-scale vortex structures, and longitudinal pressure gradient are described. Dimples of various shapes and arrays are considered as heat transfer enhancement. Imposition of vortex structures is studied on the wall in the cylinder wake. An adverse pressure gradient is studied in compressible and incompressible nonequilibrium boundary layers, while a favorable pressure gradient is studied in a supersonic nozzle. The results show that in the flows considered, the Reynolds analogy factor can exceed the values for a zero-pressure gradient boundary layer.
В работе рассмотрены различные способы воздействия на пограничные слои, позволяющие управлять фактором аналогии Рейнольдса. Описаны результаты исследования влияния интенсификаторов теплообмена, наложения крупномасштабных вихревых структур, а также продольного градиента давления. В качестве интенсификаторов теплообмена рассмотрены лунки различной формы и компоновки. Наложение вихревых структур исследовано на стенке в следе цилиндра. Неблагоприятный градиент давления исследован в сжимаемом и несжимаемом неравновесном пограничном слое, в то время как благоприятный градиент давления - в сверхзвуковом сопле. Полученные результаты показывают, что в рассмотренных течениях фактор аналогии Рейнольдса может превышать значения для безградиентного пограничного слоя.
1. Schlichting H. Boundary Layer Theory. New York: McGraw-Hill, 1979. 2. Kutateladze S.S., Leontiev A.I. Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layer. New York: Taylor and Francis, 1990. 3. Rubesin M.W. A modified Reynolds analogy for the compressible turbulent boundary layer on a flat plate // NACA TN 2917. 4. Ligrani P. Heat Transfer Augmentation Technologies for Internal Cooling // Int. J. Rotating Mach. 2013. Vol. 2013, № 2013. 5. Ligrani P.M., Oliveira M.M., Blaskovich T. Comparison of Heat Transfer Augmentation Techniques // AIAA J. 2003. Vol. 41, № 3. P. 337–362. 6. Киселёв Н.А. Разработка методов повышения теплогидравлических характеристик поверхностей с регулярным рельефом: дисс. ...канд. техн. наук. Москва. 2017 128 с. 7. Leontiev A.I., Kiselev N.A., Burtsev S.A., Strongin M.M., Vinogradov Y.A. Experimental investigation of heat transfer and drag on surfaces with spherical dimples // Exp. Therm. Fluid Sci. 2016. Vol. 79. P. 74–84. 8. Leontiev A.I., Kiselev N.A., Vinogradov Y.A., Strongin M.M., Zditovets A.G., Burtsev S.A. Experimental investigation of heat transfer and drag on surfaces coated with dimples of different shape // Int. J. Therm. Sci. 2017. Vol. 118. P. 152–167. 9. Бурцев С.А., Виноградов Ю.А., Киселёв Н.А., Стронгин М.М. Экспериментальное исследование теплогидравлических характеристик поверхностей с коридорным расположением лунок // Наука и образование (МГТУ им. Н.Э. Баумана) (электронный журнал). 2015. Vol. 15, № 05. 10. Burtsev S.A., Kiselev N.A., Leontiev A.I. Peculiarities of studying thermohydraulic characteristics of relief surfaces // High Temp. 2014. Vol. 52, № 6. P. 869–872. 11. Kiselev N.A., Burtsev S.A., Strongin M.M. A Procedure for Determining the Heat Transfer Coefficients of Surfaces with Regular Relief // Meas. Tech. 2015. Vol. 58, № 9. 12. Бурцев С.А., Киселёв Н.А., Леонтьев А.И. Особенности исследования теплогидравлических характеристик рельефных поверхностей // Теплофизика высоких температур. 2014. Vol. 52, № 6. P. 895–898. 13. Киселёв Н.А. Отработка методики определения коэффициентов теплоотдачи и восстановления температуры на основе тепловой картины на поверхности пластин, обтекаемых потоком сжимаемого газа // Тепловые процессы в технике. 2013. № 7. P. 303–312. 14. Burtsev S.A., Vinogradov Y.A., Kiselev N.A., Strongin M.M. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement // Sci. Educ. Bauman MSTU. 2015. Vol. 15, № 05. 15. Marumo E., Suzuki K., Sato T. Turbulent heat transfer in a flat plate boundary layer disturbed by a cylinder // Int. J. Heat Fluid Flow. 1985. Vol. 6, № 4. P. 241–248. 16. Kawaguchi Y., Suzuki K., Sato T. Heat transfer promotion with a cylinder array located near the wall // Int. J. Heat Fluid Flow. 1985. Vol. 6, № 4. P. 249–255. 17. Suzuki H., Suzuki K., Sato T. Dissimilarity between heat and momentum transfer in a turbulent boundary layer disturbed by a cylinder // Int. J. Heat Mass Transf. 1988. Vol. 31, № 2. P. 259–265. 18. Inaoka K., Yamamoto J., Suzuki K. Dissimilarity between heat transfer and momentum transfer in a disturbed turbulent boundary layer with insertion of a rod – modeling and numerical simulation // Int. J. Heat Fluid Flow. 1999. Vol. 20, № 3. P. 290–301. 19. de Souza F., Delville J., Lewalle J., Bonnet J.P. Large scale coherent structures in a turbulent boundary layer interacting with a cylinder wake // Exp. Therm. Fluid Sci. 1999. Vol. 19, № 4. P. 204–213. 20. Matsubara K., Miura T., Ohta H. Transport dissimilarity in turbulent channel flow disturbed by rib protrusion with aspect ratio up to 64 // Int. J. Heat Mass Transf. Elsevier Ltd, 2015. Vol. 86. P. 113–123. 21. Suzuki H., Suzuki K., Sato T. Dissimilarity between heat and momentum transfer in a turbulent boundary layer disturbed by a cylinder // Int. J. Heat Mass Transf. 1988. Vol. 31, № 2. P. 259–265. 22. Kiselev N.A., Leontiev A.I., Vinogradov Y.A., Zditovets A.G., Strongin M.M. Effect of large-scale vortex induced by a cylinder on the drag and heat transfer coefficients of smooth and dimpled surfaces // Int. J. Therm. Sci. Elsevier, 2019. Vol. 136, № November 2018. P. 396–409. 23. Suzuki K., Suzuki H., Kikkawa Y., Kawaguchi Y. Study on a Turbulent boundary Layer Disturbed by a Cylinder-Effect of Cylinder Size and Position // Turbul. Shear Flows / ed. Durst F., Friedrich R., Launder B.E., Schmidt F.W., Schumann U., Whitelaw J.H. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. Vol. 7. P. 119–135. 24. Clauser F.H. Turbulent Boundary Layers in Adverse Pressure Gradients // J. Aeronaut. Sci. 1954. Vol. 21, № 2. P. 91–108. 25. Devenport W.J., Lowe K.T. Equilibrium and non-equilibrium turbulent boundary layers // Prog. Aerosp. Sci. Elsevier Ltd, 2022. Vol. 131, № March. P. 100807. 26. Clauser F.H. The Turbulent Boundary Layer // Adv. Appl. Mech. 1956. Vol. 4, № C. P. 1–51. 27. Mellor G.L., Gibson D.M. Equilibrium turbulent boundary layers // J. Fluid Mech. 1966. Vol. 24, № 2. P. 225–253. 28. So R.M.C. Pressure gradient effects on Reynolds analogy for constant property equilibrium turbulent boundary layers // Int. J. Heat Mass Transf. 1994. Vol. 37, № 1. P. 27–41. 29. Wenzel C., Gibis T., Kloker M., Rist U. Reynolds analogy factor in self-similar compressible turbulent boundary layeres with pressure gradients // J. Fluid Mech. Cambridge University Press, 2020. Vol. 907. 30. Skåre P.E., Krogstad P.Å. A Turbulent Equilibrium Boundary Layer Near Separation // J. Fluid Mech. 1994. Vol. 272. P. 319–348. 31. Стрелец Ю.В., Лапин М.Х. Внутренние течения газовых смесей. Москва: Наука, 1989. 32. Lewis J.E., Gran R.L., Kubota T. An experiment on the adiabatic compressible turbulent boundary layer in adverse and favourable pressure gradients // J. Fluid Mech. 1972. Vol. 51, № 4. P. 657–672. 33. Houra T., Nagano Y. Effects of adverse pressure gradient on heat transfer mechanism in thermal boundary layer // Int. J. Heat Fluid Flow. 2006. Vol. 27, № 5. P. 967–976. 34. Launder B.E. Laminarization of the turbulent boundary layer by acceleration. Tech Rep. 77., 1964. 35. Moretti P.M., Kays W.M. Heat transfer to a turbulent boundary layer with varying free-stream velocity and varying surface temperature—an experimental study // Int. J. Heat Mass Transf. 1965. Vol. 8, № 9. P. 1187–1202. 36. Preston J.H. The minimum Reynolds number for a turbulent boundary layer and the selection of a transition device // J. Fluid Mech. 1958. Vol. 3, № 4. P. 373–384. 37. Narayanan M.A.B., Ramjee V. On the criteria for reverse transition in a two-dimensional boundary layer flow // J. Fluid Mech. 1969. Vol. 35, № 2. P. 225–241. 38. Bader P., Pschernig M., Sanz W., Woisetschläger J., Heitmeir F., Meile W., Brenn G. Experimental Investigation of Boundary Layer Relaminarization in Accelerated Flow // J. Fluids Eng. Trans. ASME. 2018. Vol. 140, № 8. 39. Fernholz H.H., Warnack D. The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 1. The turbulent boundary layer. 1998. Vol. 359. P. 329–356. 40. Jones W.P., Launder B.E. Some properties of sink-flow turbulent boundary layers // J. Fluid Mech. 1972. Vol. 56, № 2. P. 337–351. 41. Schraub F.A., Kline S.J. A Study of the Structures of the Turbulent Boundary Layer with and without Longitudinal Pressure Gradients. Stanford, California, 1965. 42. Patel V.C. Calibration of the Preston tube and limitations on its use in pressure gradients // J. Fluid Mech. 1965. Vol. 23, № 1. P. 185–208. 43. Patel V.C., Head M.R. Reversion of turbulent to laminar flow // J. Fluid Mech. 1968. Vol. 34, № 2. P. 371–392. 44. Nash-Webber J.L., Oates G.C. An Engineering Approach to the Design of Laminarizing Nozzle Flows // J. Basic Eng. 1972. Vol. 94, № 4. P. 897–903. 45. Schoenman L., Block P. Laminar boundary-layer heat transfer in low-thrust rocket nozzles // J. Spacecr. Rockets. 1968. Vol. 5, № 9. P. 1082–1089. 46. Back L.H., Cuffel R.F. Turbulent Boundary Layer and Heat Transfer Measurements Along a Convergent-Divergent Nozzle // J. Heat Transfer. 1971. Vol. 93, № 4. P. 397. 47. Back L.H., Massier P.F., Gier H.L. Convective heat transfer in a convergent-divergent nozzle // Int. J. Heat Mass Transf. 1964. Vol. 7, № 5. P. 549–568. 48. Back L.H., Cuffel R.F., Massier P.F. Laminarization of a Turbulent Boundary Layer in Nozzle Flow—Boundary Layer and Heat Transfer Measurements With Wall Cooling // J. Heat Transfer. 1970. Vol. 92, № 3. P. 333–344. 49. Bradshaw P. A note on reverse transition // J. Fluid Mech. 1969. Vol. 35, № 2. P. 387–390. 50. Bader P., Pieringer P., Sanz W. On the capability of transition models to predict relaminarization // 12th Eur. Conf. Turbomach. Fluid Dyn. Thermodyn. ETC 2017. 2017. P. 1–14. 51. Mutama K.R., Iacovides H. The Investigation of developing flow and heat transfer in a long converging duct // J. Heat Transfer. 1993. Vol. 115, № 4. P. 897–903. 52. Kiselev N.A., Leontiev A.I., Vinogradov Y.A., Zditovets A.G., Popovich S.S. Heat transfer and skin-friction in a turbulent boundary layer under a non-equilibrium longitudinal adverse pressure gradient // Int. J. Heat Fluid Flow. Elsevier Inc., 2021. Vol. 89, № January. P. 108801. 53. Kiselev N.A., Malastowski N.S., Zditovets A.G., Vinogradov Y.A. Reynolds analogy violation for a compressible turbulent boundary layer with pressure gradient in a small-size supersonic slot channel // Int. J. Therm. Sci. Elsevier Masson SAS, 2024. Vol. 200, № November 2023. P. 108973. 54. Ovsannikov A.M., Pirumov U.G., Pletneva E.M., Roslyakov G.S. Atlas ploskih sopel. Moscow: Moscow University Press, 1976. 108 p. 55. Kiselev N.A., Malastowski N.S., Vinogradov Y.A., Zditovets A.G. Experimental and numerical study of heat transfer under laminarization condition in a small size supersonic nozzle // Int. J. Therm. Sci. 2023. Vol. 187. P. 108182.