Model of nonequilibrium emissivity of diatomic molecules averaged over the rotational structure




The derivation of the calculated relations of the model of the emissivity of the electronic vibrational bands of diatomic molecules averaged over the rotational structure is presented. The model is based on the use of an ab-initio expression for the integral radiation emission coefficient of the rotational line of an electron-vibrational-rotational quantum transition and the results of ab-initio calculations of the Einstein coefficients of rovibronic quantum transitions of spontaneous emission.
Calculation formulas are obtained for the averaged emissivity coefficients of heteronuclear molecules. Their validity is shown for homonuclear molecules, including states of different symmetries, in the spectra of which alternating intensities of the emission of rotational lines are observed.
Using the obtained relations, spectra of nonequilibrium radiation from the shock wave relaxation zone were obtained in shock wave experiments in air at a speed of 7.3 km/s and a pressure of 0.7 Torr in a low-pressure chamber. A comparison with experimental data has been made.

The derivation of the calculated relations of the model of the emissivity of the electronic vibrational bands of diatomic molecules averaged over the rotational structure is presented. The model is based on the use of an ab-initio expression for the integral radiation emission coefficient of the rotational line of an electron-vibrational-rotational quantum transition and the results of ab-initio calculations of the Einstein coefficients of rovibronic quantum transitions of spontaneous emission. Calculation formulas are obtained for the averaged emissivity coefficients of heteronuclear molecules. Their validity is shown for homonuclear molecules, including states of different symmetries, in the spectra of which alternating intensities of the emission of rotational lines are observed. Using the obtained relations, spectra of nonequilibrium radiation from the shock wave relaxation zone were obtained in shock wave experiments in air at a speed of 7.3 km/s and a pressure of 0.7 Torr in a low-pressure chamber. A comparison with experimental data has been made.


Volume 24, issue 6, 2023 year


Модель усредненной по вращательной структуре неравновесной излучательной способности двухатомных молекул

Представлен вывод расчетных соотношений модели усредненной по вращательной структуре излучательной способности электронно-колебательных полос двухатомных молекул. Модель основана на использовании ab-initio выражения для интегрального коэффициента испускания излучения вращательной линии электронно-колебательно-вращательного квантового перехода и результатов ab-initio расчетов коэффициентов Эйнштейна ровибронных квантовых переходов спонтанного излучения.
Расчетные формулы получены для усредненных коэффициентов излучения гетероядерных молекул. Показана их справедливость для гомоядерных молекул, в том числе для состояний разной симметрии, в спектрах которых наблюдается чередование интенсивностей излучения вращательных линий.
С использованием полученных соотношений получены спектры неравновесного излучения релаксационной зоны ударной волны в ударно-волновых экспериментах в воздухе при скорости 7.3 км/с и давлении 0.7 Торр в камере низкого давления. Выполнено сравнение с экспериментальными данными.

неравновесное излучение сильных ударных волн, спектральная излучательная способность двухатомных молекул, излучательная способность усредненная по вращательной структуре электронно-колебательно-вращательных переходов


Volume 24, issue 6, 2023 year



1. Avilova I.V., Biberman L.M., Vorobyov V.S. and others. Optical properties of hot air. M.: Science. 1970. 320 p.
2. Kamenshchikov V.A., Plastinin Yu.A., Nikolaev V.M. and others. Radiation properties of gases at high temperatures. M.: Mechanical engineering. 1971. 440 p.
3. Surzhikov S.T. Optical properties of gases and plasma. M.: Publishing house of MSTU im. N.E. Bauman. 2004. 575 p.
4. Cruden B.A., Brandis A.V. Measurement of radiative nonequilibrium for Air Shocks Between 7 and 9 km/s//Journal Thermophysics and Heat Transfer. November 2019. https://doi.org/10.2514/1.T5735
5. Kozlov P.V., Surzhikov S.T. Nonequilibrium radiation NO in shocked air // AIAA 2017-0157. 16 p.m. https://doi.org/10.2514/6.2017-0157
6. Kozlov P.V. Experimental study of the radiation properties of air behind the shock wave front at speeds up to 10 km/s // Physico-chemical kinetics in gas dynamics. 2016. T.17, issue. 1. http://chemphys.edu.ru/issues/2016-17-1/articles/624/
7. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. Experimental study of the radiative characteristics of shock-heated air in the ultraviolet and visible regions of the spectrum. Izv. RAS, MZhG. 2022. No. 6.
8. Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. M.: Science. 1980. 320p.
9. Whiting E.E., Schadee A., Tatum J.B., Hougen J.T., Nicholls R.W. Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectrum// J.Mol.Spec. 1980. Vol.80, p. 249.
10. Elyashevich M.A. Atomic and molecular spectroscopy. M.: URSS. 2001. 894 p.
11. Nicholls, R. W., & Jarmain, W. R. r-Centroids: Average Internuclear Separations Associated with Molecular Bands // Proceedings of the Physical Society. Section A. 1956. 69(3). pp. 253–264.
12. Fraser, P. A. (1954). A method of determining the electronic transition moment for dia-tomic molecules // Canadian Journal of Physics. 1954. Vol.32. No.8. pp.515–521.
13. Kuzmenko N.E., Kuznetsova L.A., Kuzyakov Yu.Ya. Franck-Condon factors of diatomic molecules. M.: Moscow State University Publishing House. 1984. 342 p.
14. Herzberg G. Molecular Spectra and Molecular Structures. I. Spectra of Diatomic Molecules. 2nd ed., Van Nostrand. Princeton. N.J. 1950.
15. Huber K.P., Herzberg G. Constants of diatomic molecules. T. 1, 2. M.: Mir. 1984.
16. Radtsig A.A., Smirnov B.M. Handbook of Atomic and Molecular Physics. M.: Atomizdat. 1980. 240 p.
17. Gurvich L.V., Veits I.V., Medvedev V.A. and others. Thermodynamic properties of individual substances. T. 1, 2. M.: Science. 1978.
18. Goloshchuk V.S., Surzhikov S.T. Calculation of partition functions and thermodynamic potentials of diatomic molecules and their ions in a wide temperature range // Preprint of the Institute of Mechanics and Mechanics of the Russian Academy of Sciences No. 983. 2011. 57 p.
19. Kuznetsova L.A., Surzhikov S.T. Radiative heat transfer in narrow bands of rotational lines of diatomic molecules electronic spectra//ASME HTD-Vol. 357-1. 1998. pp. 41-49.
20. Stupochenko E.V., Losev S.A., Osipov A.I. Relaxation processes in shock waves. M.: Publishing house "Science" Chief editor of Phys.-Mat. Literatures. 1965. 484 p.
21. Surzhikov S.T. Application of Quasistationary eRC-Models for Calculating Nonequilibrium Radiation of Shock Waves at Velocities of Approximately 10 km/s // Fluid Dynamics, 2022, Vol. 57, Suppl. 2, pp. S594–S621.
22. Kuznetsova L.A., Surzhikov S.T. Information and computing complex MSRT-RADEN. I. Basic model of absorption coefficients//Mathematical modeling. 1998. T.36. No. 3. P.15-26.
23. Kuznetsova L.A., Surzhikov S.T. Information and computing complex MSRT-RADEN. 2. Models of absorption coefficients//Mathematical modeling. 1998. T.36. No. 4. pp. 30-40.
24. Kuznetsova L.A., Surzhikov S.T. Information and computing complex MSRT-RADEN. 3. Database//Mathematical modeling. 1998. T.36. No. 5. pp. 15-26.