О некоторых практических аспектах построения расчетных сеток для задач вычислительной аэротермодинамики



On some practical aspects of computational grids generation for computational aerothermodynamics problems

This paper is devoted to a review of grid generation techniques based on the partial differential equations numerical solving. Some methods application to the complex objects grid generation were considered for the purpose of the subsequent numerical investigations conducting by the computer codes. The main questions of the grid generation such as CAD surface reading and its discretization, preliminary grid generation, detailed grid generation, orthogonalization and adaptation of grid.

computational aerothermodynamics, partial differential equations, finite-difference grids, finite volume method, transfinite interpolation, grid adaptation, splines


Том 24, выпуск 6, 2023 год



В рамках данной статьи представлен обзор способов построения расчетных сеток с использованием методов, основанных на численном решении уравнений в частных производных. При этом отдельное внимание уделено вопросам применения некоторых из этих методов к созданию сеточных топологий для объектов сложной геометрической формы с целью проведения последующих расчетов с использованием авторских компьютерных кодов. Обсуждаются ключевые вопросы построения расчетных сеток, такие как работа с электронной поверхностью исследуемого объекта, в том числе ее дискретизация, построение предварительной сетки, увеличение количества узлов, ортогонализация и адаптация построенной сетки.

вычислительная аэротермодинамика, уравнения в частных производных, конечно-разностные расчетные сетки, метод контрольного объема, трансфинитная интерполяция, адаптация сеток, сплайны


Том 24, выпуск 6, 2023 год



1. Winslow A. M. Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh // Journal of computational physics. – 1966. – Т. 1. – №. 2. – С. 149-172.
2. Thompson J. F., Thames F. C., Mastin C. W. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies. – NASA, 1977. – №. NASA-CR-2729.
3. Thompson J. F., Soni B. K., Weatherill N. P. (ed.). Handbook of grid generation. – CRC press, 1998.
4. Villamizar V., Acosta S. Elliptic grids with nearly uniform cell area and line spacing // Electronic Transactions on Numerical Analysis. – 2009. – Т. 34. – С. 59-75.
5. Годунов С. К., Прокопов Г. П. Об использовании подвижных сеток в газодинамических расче-тах // Журнал вычислительной математики и математической физики. – 1972. – Т. 12. – №. 2. – С. 429-440.
6. Kania L. Elliptic adaptive grid generation and area equidistribution // International journal for nu-merical methods in fluids. – 1999. – Т. 30. – №. 5. – С. 481-491.
7. Soni B. K. et al. Solution adaptive grid strategies based on point redistribution //Computer Methods in Applied Mechanics and Engineering. – 2000. – Т. 189. – №. 4. – С. 1183-1204.
8. Brown K. G. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations. – AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING, 1983.
9. Soni B. Two-and three-dimensional grid generation for internal flow applications of computational fluid dynamics // 7th Computational Physics Conference. – 1985. – С. 1526.
10. Soni B. K. Grid generation for internal flow configurations //Computers & Mathematics with Ap-plications. – 1992. – Т. 24. – №. 5-6. – С. 191-201.
11. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы //М.: Бином. – 2003. –
Т. 640.
12. Nakamura S. Marching grid generation using parabolic partial differential equations //Numerical grid generation; Symposium on Numerical Generation of Curvilinear Coordinate Systems and Their Use in the Numerical Solution of Partial Differential Equations. – 1982.
13. Edwards T. Noniterative three-dimensional grid generation using parabolic partial differential equa-tions //23rd Aerospace Sciences Meeting. – 1985. – С. 485.
14. Крылов А. А., Михалин В. А., Савельев А. Д. Опыт применения параболического генератора сеток в задачах вычислительной газовой динамики //Журнал вычислительной математики и матема-тической физики. – 2003. – Т. 43. – №. 7. – С. 1096-1106.
15. Steger J. L., Chaussee D. S. Generation of body-fitted coordinates using hyperbolic partial differen-tial equations //SIAM Journal on Scientific and Statistical Computing. – 1980. – Т. 1. – №. 4. – С. 431-437.
16. Kinsey D. W., Barth T. J. Description of a hyperbolic grid generating procedure for arbitrary two-dimensional bodies. – AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON AFB OH, 1984.
17. Steger J. L. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations. – 1989. – №. NASA-TM-101069.
18. Brakhage K. H., Müller S. Algebraic–hyperbolic grid generation with precise control of intersection of angles //International Journal for Numerical Methods in Fluids. – 2000. – Т. 33. – №. 1. – С. 89-123.
19. Chan W. M., Steger J. L. Enhancements of a three-dimensional hyperbolic grid generation scheme //Applied Mathematics and Computation. – 1992. – Т. 51. – №. 2-3. – С. 181-205.
20. Seki R. Efficient grid generation. – 1989. – №. NAS 1.26: 185034.
21. Nakamura S., Suzuki M. Noniterative three-dimensional grid generation using a parabolic-hyperbolic hybrid scheme //25th AIAA Aerospace Sciences Meeting. – 1987. – С. 277.
22. Alter S. J., Weilmuenster K. J. Single block three-dimensional volume grids about complex aero-dynamic vehicles. – 1993. – №. NAS 1.15: 108986.
23. Alter S., Cheatwood F. Elliptic volume grid generation for viscous CFD parametric design studies //Fluid Dynamics Conference. – 1996. – С. 1999.
24. Alter S. Complex volume grid generation through the use of grid reusability // 13th Computational Fluid Dynamics Conference. – 1997. – С. 1987.
25. Hollis B. R. et al. X-33 computational aeroheating predictions and comparisons with experimental data // Journal of Spacecraft and Rockets. – 2001. – Т. 38. – №. 5. – С. 658-669.
26. Twigg C. Catmull-rom splines // Computer. – 2003. – Т. 41. – №. 6. – С. 4-6.
27. Rassineux A. et al. Surface remeshing by local hermite diffuse interpolation //International Journal for numerical methods in Engineering. – 2000. – Т. 49. – №. 1‐2. – С. 31-49.
28. Суржиков С. Т. Аналитические методы построения конечно-разностных сеток для расчета аэротермодинамики спускаемых космических аппаратов //Вестник Московского государственного технического университета им. НЭ Баумана. Серия «Машиностроение». – 2004. – №. 2. – С. 24-50.
29. Thompson J. F. A General Three-Dimensional Elliptic Grid Generation System Generation on a Composite Block Structure // Comp. Meth. In App. Mech. and Eng. № 64. 1987. С. 377-411.
30. Rasmussen M.L. Experimental Forces and Moments on Cone-Derived Waveriders for M=3 to 5 // Journal of Spacecraft and Rockets. 1982. Т. 19. № 6. С. 592-598.