Численное моделирование объемной конденсации пара вблизи межфазной поверхности при интенсивном испарении



Numerical simulation of vapor bulk condensation near the interphase surface under intensive evaporation conditions

The results of the numerical solution of the Boltzmann kinetic equation for intensive evaporation from the interfacial surface were used to calculate the kinetics of the bulk condensation process near the evaporation surface. It was shown that during the period of existence of the supersaturated state, which was predicted on the basis of the solution without considering condensation, the condensation aerosol has time to form. When analyzing evaporation from the interfacial surface, it is necessary to take into account the presence of formed droplets in the vapor phase and the thermal effect of condensation on vapor parameters.

intense evaporation, Boltzmann kinetic equation, bulk condensation, condensation aerosol.

Наум Моисеевич Корценштейн, Леонид Витальевич Петров, Артем Владимирович Рудов, Арсений Константинович Ястребов

Том 24, выпуск 5, 2023 год



Результаты численного решения кинетического уравнения Больцмана для интенсивного испарения с межфазной поверхности были использованы для расчета кинетики процесса объемной конденсации вблизи поверхности испарения. Показано, что за время существования пересыщенного состояния, предсказываемого на основе решения без учета конденсации, конденсационный аэрозоль успевает сформироваться. При анализе испарения с межфазной поверхности необходимо учитывать наличие образовавшихся капель в паровой фазе и тепловое воздействие конденсации на параметры пара.

интенсивное испарение, кинетическое уравнение Больцмана, объемная конденсация, конденсационный аэрозоль

Наум Моисеевич Корценштейн, Леонид Витальевич Петров, Артем Владимирович Рудов, Арсений Константинович Ястребов

Том 24, выпуск 5, 2023 год



1. D.A. Labuntsov, A.P. Kryukov, Analysis of intensive evaporation and condensation // Int. J. Heat Mass Transfer 22 (1979) 989–1002.
2. С.И. Анисимов, Я.А. Имас, Г.С. Романов, Ю.В. Ходыко. Действие излучения большой мощности на металлы. М.: «Наука», 1970
3. В.В. Аристов, Ф.Г. Черемисин. Прямое численное решение кинетического уравнения Больцмана. М.: Вычислительный центр РАН, 1992.
4. Быков Н.Ю. О моделирование процесса образования кластеров при сферическом расширении водяного пара в вакуум // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2018. Т. 11. № 1. С. 86 – 101. DOI: 10.18721/JPM.11109.
5. Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarenton Press, 1994. 458 р.
6. N. M. Kortsenshteyn, G. Ya. Gerasimov, L. V. Petrov, and Yu. B. Shmel’kov. A Software Package for Simulating Physicochemical Processes and Properties of Working Fluids // Thermal Engineering, 2020. Vol. 67, p. 591–603.
7. М.Н. Коган. Динамика разреженного газа. М.: Наука, 1967.
8. Ф.Г. Черемисин. Консервативный метод вычисления интеграла столкновений Больцмана // Доклады Академии наук. 1997. Т. 357. № 1. С. 53–56.
9. H.M. Hulburt, S.M. Katz, Some problems in particle technology: a statistical mechanical formulation, Chemical Engineering Science 19 (8) (1964) 555–574. https://doi.org/10.1016/0009-2509 (64) 85047-8.
10. Л.Е. Стернин. Основы газодинамики двухфазных течений в соплах. М.: Машиностроение. 1974.
11. M. Frenclach, S.J. Harris, Aerosol dynamics modeling using the method of moments, Journal of Colloid and Interface Science 118 (1) (1987) 252–261. https://doi.org/10.1016/0021- 9797(87)90454-1.
12. P.G. Hill, Condensation of water vapour during supersonic expansion in nozzles, Journal of Fluid Mechanics 25 (3) 593-620. https://doi.org/10.1017/S0022112066000284.
13. C. Yuan, R.O. Fox, Conditional quadrature method of moments for kinetic equations, Journal of Computational Physics 230 (22) (2011) 8216–8246. https://doi.org/10.1016/j.jcp.2011.07.020.
14. N.M. Kortsensteyn, E.V. Samuilov, A.K. Yastrebov, About use of a method of direct numerical solution for simulation of bulk condensation of supersaturated vapour, International Journal of Heat and Mass Transfer 52 (3–4) (2009) 548-556. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.033
15. N.M. Kortsenshteyn, L.V. Petrov, Numerical Simulation of Bulk Condensation in Gas-Vapour Mixtures Flowing through a Nozzle, Colloid Journal 79 (3) (2017) 333–340. https://doi.org/10.1016/j.jcp.2011.07.020
16. D. Kashchiev, Nucleation. Basic Theory with Applications, Butterworth-Heinemann, Oxford, 2000, pp. 529.
17. S.L. Girshick, C. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapour, The Journal of Chemical Physics 93 (1990) 1273-1277. https://doi.org/10.1063/1.459191
18. H. Pathak, J. Wölk, R. Strey, B. Wyslouzil, Co-condensation of nonane and D2O in a supersonic nozzle, The Journal of Chemical Physics 140 (3) (2014) 034304. https://doi.org/10.1063/1.4861052
19. J. Edathol, D. Brezgin, K. Aronson, Heuy Dong Kim, Prediction of non-equilibrium homogeneous condensation in supersonic nozzle flows using Eulerian-Eulerian models, International Journal of Heat and Mass Transfer 152 (2020) 119451. https://doi.org/10.1016/ j. ijheatmasstransfer.2020.119451
20. A. Kantrowitz, Nucleation in very rapid vapor expansions, The Journal of chemical physics 19 (9) (1951) 1097–1100.
21. Fuchs N.A. Evapouration and Droplet Growth in Gaseous Media. Pergamon Press, New York, 1959, pp. 72.
22. J. Huang. A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice // Journal of Applied Meteorology and Climatology, 2018. P. 1265–1272.