The article briefly describes the development of equipment for the experimental determination of the radiative properties and temperatures of solids associated with radiation processes. The difficulties arising in determining the emissivity of various materials, as well as the advantages and disadvantages of the methods used for experimental registration of the corresponding parameters are described.
Излучение реальных тел и бесконтактные способы регистрации температуры
В статье кратко изложено развитие оборудования для экспериментального определения излучательных свойств и температур твердых тел, связанных с процессами излучения. Описаны сложности, возникающие при определении степени черноты различных материалов, а также преимущества и недостатки применяемых методик экспериментальной регистрации соответствующих параметров.
излучение, температура, абсолютно черное тело, пирометрия.
1. Latiev LN et al. Radiative properties of materials // Energy. - 1974. - T. 472. [in Russian] 2. Surzhikov S. T., Computer aerophysics of applied spacecraft. two-dimensional models, M.: Fizmatlit, 2018, 544 p. (ISBN: 978-5-9221-1773-9) [in Russian] 3. Surzhikov S. T., Radiation gas dynamics of used spacecraft. multi-temperature models, Moscow: IPMech RAN, 2013. (ISBN 9785917410883) [in Russian] 4. Simonenko E. P., Simonenko N. P., Sevastyanov V. G., Kuznetsov N. T., Ultrahigh-temperature ceramic materials: modern problems and observations, IP Konyakhin A.V., 2020, 324 p. (ISBN: 978-5- 6044439-0-3) [in Russian] 5. 5. Korostovtsev M. A., 1982. Science of ancient Egypt // Essays on the history of natural science knowledge in antiquity. — M.: Nauka. - S. 120-130 [in Russian] 6. Berry, Arthur. A short history of astronomy. Good Press, 2019. 7. Eremeeva A. I., Tsitsin F. A. History of astronomy (the main stages in the development of the astronomical picture of the world) // M.: Moscow State University. - 1989. 8. Asmus VF Antique philosophy. - 2nd ed. - M .: Higher School, 1976. - p. 74-97. — 543 p. [in Russian] 9. Swenson R. Optics, Gender, and the Eighteenth-Century Gaze: Looking at Eliza Haywood's Anti-Pamela //The Eighteenth Century. – 2010. – Т. 51. – №. 1. – С. 27-43. DOI:10.1353/ecy.2010.0006 10. Finger S. Origins of neuroscience: a history of explorations into brain function. – Oxford University Press, USA, 2001. 11. Rodin A.V. Mathematics of Euclid in the light of the philosophy of Plato and Aristotle. Science, 2003. [in Russian] 12. Bacon R. Fr. Rogeri Bacon Opera quaedam hactenus inedita: Vol. 1. containing 1. Opus tertium. 2. Opus minus. 3. Compendium philosophiae. – Longman, Green, Longman and Roberts, 1859. – №. 15. 13. Descartes R. Discourse on method, optics, geometry, and meteorology. – Hackett Publishing, 2001. (ISBN 100872205681, 0872205673) 14. Newton, Isaac. Opticks, or, a treatise of the reflections, refractions, inflections & colours of light. Courier Corporation, 1952. 15. Huygens C. Traité de la lumière. – Gressner & Schramm, 1885 16. Huygens, Christiaan. Treatise on Light: In which are Explained the Causes of that which Occurs in Reflexion, & in Refraction. And Particularly in the Strange Refraction of Iceland Crystal. MacMillan and Company, limited, 1912. 17. Dijksterhuis F. J. Lenses and waves: Christiaan Huygens and the mathematical science of optics in the seventeenth century. – Springer Science & Business Media, 2004. – Т. 9. DOI:10.1007/1-4020-2698-8 18. Hooke R. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. – Courier Corporation, 2003. 19. Young T. On the theory of light and colours, 1802. – 1948. 20. Melvill T. Observations on light and colours //Journal of the Royal Astronomical Society of Canada. – 1914. – Т. 8. – С. 231. 21. Herschel W. XIV. Experiments on the refrangibility of the invisible rays of the sun //Philosophical Transactions of the Royal Society of London. – 1800. – №. 90. – С. 284-292. doi:10.1098/rstl.1800.0015 22. Frercks J., Weber H., Wiesenfeldt G. Reception and discovery: the nature of Johann Wilhelm Ritter’s invisible rays //Studies in History and Philosophy of Science Part A. – 2009. – Т. 40. – №. 2. – С. 143-156. 23. Ritter J. W. Key texts of Johann Wilhelm Ritter (1776-1810) on the science and art of nature. – Brill, 2010. – Т. 16 24. Schettino E. A new instrument for infrared radiation measurements: the thermopile of Macedonio Melloni //Annals of science. – 1989. – Т. 46. – №. 5. – С. 511-517. 25. Kirchhoff G., Bunsen R. Zusammenhang von emission und absorption von Licht und Wärme //Ann. Phys. Chem. – 1860. – Т. 109. – №. 1860. – С. 275-301. doi:10.1002/andp.18601850205. 26. Maxwell, J. C. "1902, Theory of Heat." (1871). 27. Paschen F. On the existence of law in the spectra of solid bodies, and on a new determination of the temperature of the Sun //The Astrophysical Journal. – 1895. – Т. 2. – С. 202. 28. Barr E. S. Historical survey of the early development of the infrared spectral region //American Journal of physics. – 1960. – Т. 28. – №. 1. – С. 42-54. 29. Hertz, Heinrich, V. F. Kotov, and A. V. Sulimo-Samuylo. The principles of mechanics set forth in the new connection. Academy of Sciences of the USSR, 1959. 30. Jeans J. H. The growth of physical science. – CUP Archive, 1951. 31. Kragh, Helge. "Max Planck: the reluctant revolutionary." Physics World 13.12 (2000): 31. 32. Sobolev N.N. (Ed.). Optical pyrometry of plasma. Digest of articles. Foreign Publishing House literature, 1960. [in Russian] 33. Johnson, R. Barry, and Sean M. Stewart. "A history of slide rules for blackbody radiation computations." Tribute to William Wolfe. Vol. 8483. SPIE, 2012 34. Stewart, Sean M., and R. Barry Johnson. Blackbody radiation: A history of thermal radiation computational aids and numerical methods. CRC Press, 2016. 35. Wien, W. (1897). XXX. On the division of energy in the emission-spectrum of a black body. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(262), 214-220 36. M. V. Torchick and M. A. Kotov, “Brief review of the development of tools for calculating black body radiation parameters,” Physicochemical Kinetics in Gas Dynamics. - 2022. - V. 23, No. 4. [in Russian] http://chemphys.edu.ru/issues/2022-23-4/articles/1004/ 37. Paschen F. On the existence of law in the spectra of solid bodies, and on a new determination of the temperature of the Sun //The Astrophysical Journal. – 1895. – Т. 2. – С. 202. 38. Barr E. S. Historical survey of the early development of the infrared spectral region //American Journal of physics. – 1960. – Т. 28. – №. 1. – С. 42-54. 39. Ribot, G. "Optical pyrometry." Moscow: GTTI (1934). [in Russian] 40. Wien W., Lummer O. Methode zur Prüfung des Strahlungsgesetzes absolut schwarzer Körper //Annalen der Physik. – 1895. – Т. 292. – №. 11. – С. 451-456. 41. Lummer O., Pringsheim E. Die Strahlung eines „schwarzen” Körpers zwischen 100 und 1300° C //Annalen der Physik. – 1897. – Т. 299. – №. 13. – С. 395-410. 42. Lummer O., Pringsheim E. Die vertheilung der energie im spectrum des schwarzen körpers //Verhandlungen der Deutsche Physikalische Gesellschaft. – 1899. – Т. 1. – №. 23. – С. 215. 43. Lummer O., Pringsheim E. Über die Strahlung des schwarzen Körpers für lange Wellen. – Barth, 1900. 44. De Arrieta I. G. Beyond the infrared: a centenary of Heinrich Rubens’s death //The European Physical Journal H. – 2022. – Т. 47. – №. 1. – С. 11. 45. Planck M. The theory of heat radiation. – Blakiston, 1914. 46. Magunov A. N. Spectral pyrometry. Fizmatlit // Moscow. – 2012 [in Russian] 47. B. S. Sadykov. Emissivity of metals and its connection with thermal conductivity // Journal of Engineering Physics and Thermophysics 6№9 [in Russian] 48. B. S. Sadykov and D. I. Tellyakov. Report Academy of Sciences of the TajSSR, No. 6, 1963 [in Russian] 49. B. S. Sadykov, “On the temperature dependence of the emissivity of metals”, High Temperature, 3:3 (1965), 389–394 [in Russian] 50. Torchiсk M. V., Kotov M. A. Experimental methods for determining thermophysical properties: from homogeneous solids to high-temperature composite materials//Physical-chemical kinetics in gas dynamics. 2023. V.24, issue. 3. [in Russian] http://chemphys.edu.ru/issues/2023-24-3/articles/1047/ 51. A. N. Vinnikova, V. A. Petrov, A. E. Sheindlin, “Measurement technique and experimental setup for determining the integral normal emissivity of structural materials in the temperature range from 1200 to 3000∘ K”, High Temperature, 7:1 (1969), 121–126 [in Russian] 52. Vinnikova A. N., Petrov V. A., Sheindlin A. E. Radiative characteristics of zirconium diboride. - 1970. - High Temperature, 8:5 (1970), 1030–1031 53. Peletsky V. E. Study of the emissivity of ceramic-metal tungsten // Powder metallurgy. - 1967. - no. 7. - p. 100 [in Russian] 54. Н. A. Jоnеs, I. Langтuiг. G. Е. Rev., 30, 354,1927 55. A. N. Vinnikova, V. A. Petrov, and A. E. Sheindlin. Report at Scientific and Tech. conf. according to the results of n.-i. works for 1966-1967 MPEI, 1967 [in Russian] 56. V. D. Dmitriev and G. K. Kholopov. Applied Spectroscopy, No. 3, 72, 1965 57. V. A. Petrov, V. Ya. Chekhovskoi, and A. E. Sheindlin, “Experimental determination of the integral blackness of metals and alloys at high temperatures”, High Temperature, 1:1 (1963), 24–29 [in Russian] 58. V. A. Petrov, V. Ya. Chekhovskoy, and A. E. Sheindlin, Experimental Determination of the Emissivity of Niobium in the Temperature Range 1200–2500°K, High Temperature, 1963, vol. 1, issue 3, 462–464 [in Russian] 59. V. A. Petrov, V. Ya. Chekhovskoy, A. E. Sheindlin, V. A. Nikolaeva, L. P. Fomina, Integral hemispherical emissivity, monochromatic (λ=0.65 μm) emissivity and electrical resistivity of zirconium and niobium carbides in the temperature range 1200–3500∘ K”, High Temperature, 5:6 (1967), 995–1000 [in Russian] 60. V. A. Petrov, V. Ya. Chekhovskoi, and A. E. Sheindlin, Integral hemispherical emissivity and electrical resistivity of Tantalum in the temperature range 1200–2800°K, High Temperature, 1968, volume 6, issue 3, 548–549 [in Russian] 61. Sparrow E. M., Jonsson V. K. Radiant emission characteristics of diffuse conical cavities //JOSA. – 1963. – Т. 53. – №. 7. – С. 816-821. DOI: 10.1364/JOSA.53.000816 62. Butler C. P., Jenkins R. J. Space chamber emittance measurements. – 1962. 63. Worthing A. G. The true temperature scale of tungsten and its emissive powers at incandescent temperatures //Physical Review. – 1917. – Т. 10. – №. 4. – С. 377. 64. L. N. Latiev, V. Ya. Chekhovskoy, and E. N. Shestakov, Experimental Determination of the Emissivity of Tungsten in the Visible Spectral Region in the Temperature Range 1200–2600°K, High Temperature, 1969, vol. 7, issue 4, 666– 673 [in Russian] 65. De Vos J. C. A new determination of the emissivity of tungsten ribbon //Physica. – 1954. – Т. 20. – №. 7-12. – С. 690-714. 66. Larrabee R. D. Spectral emissivity of tungsten //JOSA. – 1959. – Т. 49. – №. 6. – С. 619-625. 67. https://www.pyrometer.ru/ accessed 05.07.2023 68. Holborn L., Kurlbaum F. Über ein optisches Pyrometer //Annalen der Physik. – 1903. – Т. 315. – №. 2. – С. 225-241. 69. Becquerel E. Recherches sur la détermination des hautes températures et l'irradiation des corps incandescents. – Imprimerie de Mallet-Bachelier, 1862. 70. Hyde E. P., Forsythe W. E. The visibility of radiation in the red end of the visible spectrum //Astrophysical Journal, vol. 42, p. 285. – 1915. – Т. 42. – С. 285. 71. Hartman L. W. The Visibility of Radiation in the Blue end of the Visible Spectrum //The Astrophysical Journal. – 1918. – Т. 47. – С. 83. 72. A. V. Kirillin, M. D. Kovalenko, M. A. Sheindlin, and V. S. Pivotstsev, Experimental Study of Carbon Vapor Pressure in the Temperature Range of 5000–7000 K Using Stationary Laser Heating, High Temperature, 23:4 (1985), 557–563 73. M. A. Sheindlin, A. V. Kirillin, L. M. Kheifets, and K. A. Khodakov, High-speed automated system for high-temperature (2500–6000 K) measurements when heated by laser radiation, High Temperature, 19:4 (1981), 620–627 74. Frunze A. Spectral ratio pyrometers: advantages, disadvantages and ways to eliminate them // Photonics. - 2009. - no. 4. - S. 32-37. [in Russian] 75. Frunze A.V. Influence of methodological errors of the pyrometer on the choice of instrument //Photonics - 2012. - No. 3 - P.46-51; No. 3 - P.56-60 [in Russian] 76. Taunay P. Y. C. R., Choueiri E. Y. Multi-wavelength pyrometry based on robust statistics and cross-validation of emissivity model //Review of Scientific Instruments. – 2020. – Т. 91. – №. 11. 77. Zhang Z. M., Mashin G. Overview of Radiation Thermometry // Radiometric temperature measurements. I. Fundamentals / Ed. by Z. M. Zhang, B. K. Tsai, G. Mashin. Experimental Methods in the Physical Sciences. V. 42. — Amsterdam: Elsevier, 2009. P. 14. 78. Hollandt J., Hartmann J., Stru ß O., G¨ artner R. Industrial Applications of Radiation Thermometry // Radiometric temperature measurements. II. Applications / Ed. by Z. M. Zhang, B. K. Tsai, G. Mashin. Experimental Methods in the Physical Sciences. V. 43. — Amsterdam: Elsevier, 2010. P. 15. 79. Copyright certificate No. 1454048 A1 USSR, IPC G01J 5/02. Black Body Model: No. 4239323/25: Appl. 05/04/1987: publ. 12/10/1995 / L. B. Nefedkina, V. I. Miroshnichenko, M. A. Sheindlin. – EDN SQFOWK. 80. Copyright certificate No. 1165137 A1 USSR, IPC G01J 5/02. Black Body Model: No. 3702538/25: Appl. 02/21/1984: publ. May 15, 1994 / L. M. Buchnev, A. I. Smyslov, I. A. Dmitriev [and others]. – EDN PHZXLW. 81. FASTcal 3000 User Manual - https://tempsens.com/fastcal-3000-high-temperature-black-body-source.html accessed 20.07.2023 82. S. V. Stepanov, M. A. Sheindlin, “Statistical analysis of measurement results in multiwavelength pyrometry”, High Temperature, 55:5 (2017), 802–807 https://doi.org/10.7868/S0040364417040214 83. S. A. Evdokimov, G. V. Ermakova, A. N. Gordeev, A. F. Kolesnikov, “Investigation of the effect of high-enthalpy air flow on the effectiveness of the protective action of an antioxidant coating for carbon-containing composite materials”, High Temperature, 60:3 (2022), 385–390 DOI: https://doi.org/10.1134/S0018151X22030075 84. Anfimov, N. "Capabilities of TNIIMASH test facilities for experimental investigations of aerospace plane aerothermodynamics." 5th International Aerospace Planes and Hypersonics Technologies Conference. 1993. 85. Neiland, V. Ya. "Review of TsAGI wind tunnels." Wind tunnels and wind tunnel test techniques (1992). 86. Stewart, David, et al. "Predicting material surface catalytic efficiency using arc-jet tests." 30th Thermophysics Conference. 1995.