Within the framework of the threedimensional boundary layer, the developed turbulent flow region of the uncompressible liquid is modeled under the influence of the longitudinal unfavorable (positive) pressure gradient in the diffuser. For turbulent flow mode the averaged by Reynolds boundary layer equations are closed using the differential turbulence model based on the turbulent viscosity introduction and the KolmogorovPrandtl hypotheses. The experiments results are analyzed, the correlation dependencies for the different initial data are received. The obtained calculations are compared with experimental results. Based on the numerical solutions of turbulent boundary layer equations, the mechanisms of flows interaction are studied under the transverse pressure gradients in the uncompressible liquid .
Моделирование трехмерного течения несжимаемой жидкости в турбулентном пограничном слое диффузора
В рамках трехмерного пограничного слоя моделируется область развитого турбулентного течения несжимаемой жидкости в условиях воздействия продольного неблагоприятного (положительного) градиента давления (далее НГД) в диффузоре. Для турбулентного режима течения осредненные по Рейнольдсу уравнения пограничного слоя замыкаются с использованием дифференциальной модели турбулентности, основанной на введении турбулентной вязкости и гипотез Колмогорова–Прандтля. Проанализированы результаты эксперимента, получены корреляционные зависимости для различных исходных данных. Полученные расчеты сопоставляются с экспериментальными результатами. На основе численных решений уравнений турбулентного пограничного слоя изучаются механизмы взаимодействия потоков при наличии поперечных градиентов давления в несжимаемой жидкости.
1. Myong H. K., Kasagi N., Prediction of anisotropy of the near−wall turbulence with anisotropic low−Reynolds−number k−ε turbulence model, Transaction. ASME. J. Fluids Eng., 1990, vol. 112, no. 12, pp. 521−524. DOI: 10.1115/1.2909437 2. Zubarev V. M., The influence of strongly turbulized liquid flow parameters on the near−wall transi-tional flows in the boundary layer, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko−Matema-ticheskie Nauki, 2020, vol. 162, no. 1, pp. 38−51. 3. Zubarev V. M., Numerical simulation of turbulent incompressible flow with increasing adverse pres-sure gradient, J. Eng. Phys. Thermophys, 2019, vol. 92, no. 3, pp. 631–639. DOI: 10.1007/s10891-019-01972-0 4. Patel V. C., Rodi W., Scheuerer G., Turbulence models for near−wall and low−Reynolds−number flows: A review. AIAA Journal, 1984, vol. 23, no. 9, pp. 1308−1319. DOI: 10.2514/3.9086 5. Fundamental problems in modeling of turbulent and two−phase flows: 2nd vol.: Numerical Modeling, Ed. by А.А. Sarkisov and G.А. Filippov, Moscow: Nauka, 2010, 368 p. 6. Sana A., Ghumman A. R., Tanaka H., Modification of the damping function in the k−ε model to analyse oscillatory boundary layers, Ocean Engineering, 2007, vol. 34, pp. 320–326. DOI: 10.1016/j.oceaneng.2005.11.018 7. Hattori H., Nagano Y., Nonlinear two–equation model taking into account the wall–limiting behav-ior and redistribution of stress components, Theoret. Comput. Fluid Dynamics, 2004, vol. 17, pp. 313–330. DOI: 10.1007/s00162-004-0120-x 8. Rouhi A., Endrikat S., Modesti D., Sandberg R. D., Oda T., Tanimoto K., Hutchins N., Chung D., Riblet−generated flow mechanisms that lead to local breaking of Reynolds analogy, J. Fluid Mech., 2022, vol. 951 A45, pp.1–31. DOI: 10.1017/jfm.2022.880 9. Samuel A. E., Joubert P. N., The 1980–81 AFOSR−HTTM−Stanford Conference on Complex Turbu-lent Flows: Comparison of Computation and Experiment (S.J. Kline, B.J. Cantwell, G.M. Lilley, eds.), vol. 1., Proc. of the 1980 Conference Stanford Univ., Stanford, California, Sept. 3–6, 1980, Mech. Eng. Dept. Stanford University, 1981. Tech. Rep. AFOSR−TR−83–1001, pp. 259–261. 10. Samuel A. E., Joubert P. N., A boundary layer developing in an increasingly adverse pressure gradi-ent, J. Fluid Mech., 1974, vol. 66, pt. 3, pp. 481−505. DOI: 10.1017/S0022112074000322 11. Hirschel E. H., Kordulla W., Shear flow in surface−oriented coordinate, Notes on Numer. Fluid Mech., vol. 4, Braunschweig, Wiesbaden: Friedr. Vieweg&Sohn, 1986, X+266 p. DOI: 10.1007/978-3-663-05276-0 12. Hirschel E. H., Cousteix J., Kordulla W., Three–dimensional attached viscous flow. Basic principles and theoretical foundations. Berlin–Heidelberg: Springer. 2014, XIII+391 p. DOI: 10.1007/978-3-642-41378-0 13. Shevelev Ju. D., Spatial problems of computational fluid dynamics, M.: Nauka, 1986, 368 p. 14. Hinze J. O., Turbulence an introduction to its mechanism and theory, New York, Toronto, London: McGraw−Hill Book Comp., 1959, X+790 p. Corpus ID: 118995196 15. Launder B. E., Spalding D. B., Lectures in mathematical models of turbulence, London, New York: Academic Press, 1972, VII+169p. Corpus ID: 117983616 16. Belov I. A., Isaev S. A., Modeling of Turbulent Currents. Tutorial, SPb.: Balt. gos. tekhn. un−t, 2001, 108 p. 17. Jones W. P., Launder B. E., The prediction of laminarization with a two−equation model of turbu-lence, Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301−314. DOI: 10.1016/0017-9310(72)90076-2 18. Glushko G., Ivanov I., Kryukov I., Turbulence modeling for supersonic jet flows, Physical−Chemical Kinetics in Gas Dynamics, 2010, vol. 9. http://chemphys.edu.ru/issues/2010-9/articles/142/ 19. Hanjalic K., Launder B. E., Contribution towards a Reynolds−stress closure for low−Reynolds−number turbulence, J. Fluid Mech., 1976, vol. 74, no. 4, pp. 593−610. DOI: 10.1017/S0022112076001961 20. Nagano Y., Tsuj T., Houra T., Structure of turbulent boundary layer subjected to adverse pressure gradient, Int. J. Heat and Fluid Flow, 1998, vol. 19, pp. 563–572. DOI: 10.1016/S0142-727X(98)10013-9 21. Spalart P. R., Watmuff J. H., Experimental and numerical study of a turbulent boundary layer with pressure gradients, J. Fluid Mech., 1993, vol. 249, pp. 337–371. DOI: 10.1017/S002211209300120X