Engineering approach to determination of parameters in high-speed aircraft designing




The concept of “separation” of the designed geometry was proposed as a way to speed up calculations in high-speed aircraft (HSA) designing and increase the accuracy of determining designing parameters. Methods for simplifying the HSA geometry using simple geometries and their compositions are determined. A method for determining external and internal parameters using correlation relations and exact methods is proposed. Modules for calculating the heat flux and friction stresses on the surfaces of a sharp plate and a sharp cone, based on the criterial relations of the boundary layer theory, are implemented. Modules were verified and validated.

Engineering method, correlation relations, verification, validation


Volume 23, issue 6, 2022 year


Инженерный подход к определению параметров при проектировании высокоскоростных летательных аппаратов

Предложена концепция «дискретизации» проектируемой геометрии как способ ускорения расчетов при проектировании высокоскоростных летательных аппаратов (ВЛА) и увеличения точности определения проектных параметров. Определены способы упрощения геометрии ВЛА с использованием простых геометрий и их композиций. Предложен способ определения внешних и внутренних параметров с использованием корреляционных соотношений и точных методов. Реализованы модули расчета теплового потока и напряжений трения на поверхностях острой пластины и острого конуса, основанные на критериальных соотношениях теории пограничного слоя. Проведены верификация и валидация модулей.

Инженерный метод, корреляционные соотношения, верификация, валидация


Volume 23, issue 6, 2022 year



1. Chernij G.G. Gazovaja dinamika (Gasdynamics), Moscow: Nauka, 1988, 424 p.
2. Zemljanskij B.A., Lunev V.V., Vlasov V.I. Konvektivnij teploobmen letatel’nyh apparatov (Convective heat transfer of aircrafts. Ed. by Zemlyanskij B.A.), Moscow: Fizmatlit, 2014, 377 p.
3. Avduevskij V.S., Galicejskij B.M., Glebov G.A. Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tehnike (The basics of heat transfer in aviation and rocket and space technology), Moscow: Mashinostroenie, 1992, 528 p.
4. Surzhikov S.T. “Turbulent Heat Exchange on the Surface of a Sharp Plate at a Supersonic Flow at M = 6 ÷ 8”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 20, No. 4, 2019. http://chemphys.edu.ru/issues/2019-20-4/articles/890/
5. Krasnov N.F. Aerodinamika. Ch. 1: Osnovy teorii. Aerodinamika profilja i kryla (Aerodynamics. P. 1: The basics of theory. Aerodynamics of the profile and wing), Moscow: Knizhnyj dom “LIBROKOM”, 2015, 494 p.
6. Krasnov N.F. Aerodinamika. Ch. 2: Metody aerodinamicheskogo rascheta (Aerodynamics. P. 2: The methods of the aerodynamics calculation). Moscow: Knizhnyj dom “LIBROKOM”, 2015, 416 p
7. Bertram M.H., Cary A.M., Jr., Whitehead A.H., Jr. “Experiments with Hypersonic Turbulent Boundary Layers on Flat Plate and Delta Wings”, AGARD Specialists Meeting on Hypersonic Boundary Layers and Flow Fields, London, England, May 1968.
8. MacLean M., Wadhams T., Holden M. “Ground Test Studies of the HIFiRE-1 Transition Experiment Part 2: Computational Analysis”, Journal of Spacecraft and Rockets, Vol. 45, No. 6, November-December 2008
9. Surzhikov S.T. Teplofizika vysokih temperatur, Vol. 51, No. 2, 2013, pp. 261–276.
10. Surzhikov S.T., Komp’juternaja ajerofizika spuskaemyh kosmicheskih apparatov. Dvumernye modeli (Computational models of reentry space crafts. Two-dimensional models). Moscow: Fizmatlit, 2018, 543 p.
11. Hayes, W., and Probstein, R. “Hypersonic Flow Theory”, Academic Press, New York, 1959, pp. 333-374
12. Tannehill J.C., Anderson D.A., Pletcher R.H. “Computational Fluid Mechanics and Heat Transfer”, Taylor&Francis, 1997, 792 p.
13. Date A.W. Introduction to Computational Fluid Dynamics, Cambridge University Press. 2005. 377 p.
14. Cebeci T., Bradshaw p. “Physical and Computational Aspects of Convective Heat Transfer”, Springer-Verlag, 2012, 486 p.
15. Baldwin B.S., Lomax H. “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows”, AIAA Paper 78-0257, 1978, 8 p.
16. Spalart P.R., Allmaras S.R. “A One-Equation Turbulence Model for Aerodynamic Flows”, 30th Aerospace Sciences Meeting & Exhibit, AIAA Paper 92-0439, Jan. 1992.
17. Menter F.R. “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, Aug. 1994, pp. 1598-1605.
18. Brown J. “Turbulence Model Validation for Hypersonic Flow”, 8th Thermophysics and Heat Transfer Conference, AIAA Paper 2002-3308, June 2002.
19. Catris S., Aupoix B. “Improved Turbulence Models for Compressible Boundary Layers”, 2nd Theoretical Fluid Mechanics Meeting, AIAA Paper 98-2696, June 1998.
20. Saunders D., Yoon S, Wright M. “An Approach to Shock Envelope Grid Tailoring and Its Effect on Reentry Vehicle Solutions”, 45th Aerospace Sciences Meeting & Exhibit, AIAA Paper 2007-0207, Jan. 2007.