On the influence of the effective heat of ablation
on modeling the interaction of meteoroids with
the atmosphere
The problem of modeling the entry into the atmosphere of a meteor body and the interaction between them is considered. Modeling the motion, ablation and energy deposition of a meteoroid or its fragments moving as a single body is carried out within the framework of the meteor physics equations. The main parameter of the equations is the ablation parameter equal to the ratio of the heat transfer coefficient to the effective heat of mass loss. Due to the lack of data from theoretical and experimental studies on determination of the effective heat of ablation at high meteor velocities, its constant value is usually used in the literature. In this paper, it is proposed to use the effective heat of ablation variable along the trajectory, interpolating its value between the heat of evaporation and the heat of melting (or spallation) depending on the flight velocity. By numerically solving the meteor physics equations, we study the influence of the way of setting the effective heat of ablation and its uncertainty on the simulated characteristics: meteoroid velocity, change in its mass and energy deposition along the trajectory and on the trajectory itself; the inaccuracy in determining these characteristics is estimated.
meteoroid, ablation parameter, effective heat of ablation
Рассматривается проблема моделирования входа в атмосферу метеороида и его взаимодействия с ней. Моделирование движения, абляции и энерговыделения метеороида или его фрагментов, движущихся как единое тело, проводится в рамках уравнений метеорной физики. Основным параметром этих уравнений является параметр абляции, равный отношению коэффициента теплопередачи к эффективной теплоте уноса массы. недостатка данных теоретических и экспериментальных исследований по определению эффективной теплоты абляции при высоких метеорных скоростях, в литературе обычно используется постоянное ее значение. В данной работе предлагается использовать переменную вдоль траектории эффективную теплоту абляции, интерполируя ее значение между теплотой испарения и теплотой плавления (или шелушения) в зависимости от скорости полета. Путем численного решения уравнений метеорной физики исследуется влияние способа задания эффективной теплоты абляции и ее неопределенности на моделируемые характеристики задачи: скорость метеороида, изменение его массы, выделение энергии вдоль траектории и на саму траекторию; оценивается погрешность в определении этих характеристик.
1. Брыкина И.Г., Егорова Л.А. О параметре абляции в задаче о входе метеорного тела в атмосферу // Физико-химическая кинетика в газовой динамике. 2021. Т. 22. Вып. 5. http://chemphys.edu.ru/issues/2021-22-5/articles/959/ 2. Бронштэн В.А. Дробление и разрушение крупных метеорных тел в атмосфере // Астроном. Вестник. 1995. Т. 29. № 5. С. 450–458. 3. Левин Б.Ю. Физическая теория метеоров и метеорное вещество в Солнечной системе. М.: Изд-во АН СССР, 1956. 293 с. 4. Бронштэн В.А. Физика метеорных явлений. М.: Наука, 1981. 416 с. 5. Baldwin B., Sheaffer Y. Ablation and breakup of large meteoroids during atmospheric entry // J. Geophys. Res. 1971. V. 76. № 19. Pp. 4653–4668. 6. Брыкин М.В. Аэродинамический нагрев затупленных тел при движении в атмосфере Земли в условиях сильного радиационно-конвективного взаимодействия и абляции: диссертация на соискание ученой степени канд. физ.-мат. наук. М., 1979. 185 с. 7. Biberman L.M., Bronin S.Y., Brykin M.V. Moving of a blunt body through the dense atmosphere under conditions of severe aerodynamic heating and ablation // Acta Astronautica. 1980. V. 7. № 1. С. 53–65. 8. Brykina I.G., Bragin M.D. On models of meteoroid disruption into the cloud of fragments // Planetary & Space Sci. 2020. V. 187. No 104942. 9. Johnston C.O., Stern E.C., Wheeler L.F. Radiative heating of large meteoroids during atmospheric entry // Icarus. 2018. V. 309. Pp. 25–44. 10. Chen Y.-K. Thermal ablation modeling https://doi.org/10.1016/j.icarus.2018.02.026 for silicate materials // AIAA Paper 2016–1514. 2016. 25 p. 11. Чушкин П.И., Шарипов А.К. Абляция крупных метеорных тел при лучистом нагреве // ЖВММФ. 1990. Т. 30. №. 12. С. 1815–1826. 12. Adams M.C. Recent advances in ablation // American Rocket Society J. 1959. V. 29. № 9. Pp. 625–632. 13. Стулов В.П., Мирский В.Н., Вислый А.И. Аэродинамика болидов. М.: Наука, 1995. 236 с. 14. Agrawal P., Jenniskens P.M., Stern E., Arnold J., Chen Y.-K. Arcjet ablation of stony and iron Meteorites // AIAA Paper 2018–4284. 2018. 17 p. 15. Helber B., Dias B., Bariselli F., Zavalan L.F., Pittarello L., Goderis S., Soens B., McKibbin S.J., Claeys P., Magin T.E. Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations // Astrophys. J. 2019. V. 876. No 120. 16. Loehle S., Zander F., Hermann T., Eberhart M., Meindl A., Oefele R., Vaubaillon J., Colas F., Vernazza P., Drouard A., Gattacceca J. Experimental simulation of meteorite ablation during Earth entry using a plasma wind tunnel // Astrophys. J. 2017. V. 837. No 112. 17. Dias B., Turchi A., Stern E.C., Magin T.E. A model for meteoroid ablation including melting and vaporization // Icarus. 2020. V. 345. No 113710. https://doi.org/10.1016/j.icarus.2020.113710 18. Adams M.C., Powers W.E., Georgiev S. An experimental and theoretical study of quartz ablation at the stagnation point // J. Aerospace Sci. 1960. V. 27. № 7. Pp. 535–543. 19. Брыкина И.Г., Егорова Л.А. Аппроксимационные формулы для радиационного теплового потока при больших скоростях // Изв. РАН. МЖГ. 2019. № 4. С. 123–134. 20. Брыкина И.Г., Егорова Л.А. Моделирование движения, абляции и энерговыделения метеороида в атмосфере с учетом криволинейности траектории // Физико-химическая кинетика в газовой динамике. 2020. Т. 21. Вып. 2. http://chemphys.edu.ru/issues/2020-21-2/articles/903/. 21. ReVelle D.O. Dynamics and thermodynamics of large meteor entry: a quasi-simple ablation model // Planetary Sci. SR-76-1. 1976. 90 p. 22. Borovička J., Spurný P., Brown P., Wiegert P., Kalenda P., Clark D., Shrbený L. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor // Nature. 2013. V. 503. Pp. 235.