Воспламенение пропан-воздушных смесей в ударной трубе при давлении 30 атм



Ignition of propane-air mixtures in shock tube at pressure of 30 atm

Measurement of ignition delay times in propane-air mixtures was performed. The experiments were carried out on a shock tube behind the front of the reflected shock wave in the temperature range T = 1050–1780 K at a pressure p = 30 atm and fuel excess ratios  = 0.5, 1.0, and 2.0. It is shown that in the region of the studied temperatures, the ignition delay time in propane increases with increasing . The data obtained are compared with the results of other measurements, which shows that at low temperatures (T  1000 K) the dependence of the ignition delay time on  has the opposite character.

propane, air, ignition delay time, shock tube, high pressures

Павел Владимирович Козлов, Игорь Евгеньевич Забелинский, Наталья Германовна Быкова, Геннадий Яковлевич Герасимов, Владимир Юрьевич Левашов

Том 22, выпуск 3, 2021 год



Проведено измерение времен задержки воспламенения в пропан-воздушных смесях. Эксперименты проводились на ударной трубе за фронтом отраженной ударной волны в интервале температур T = 1050 ÷ 1780 K при давлении p = 30 атм и коэффициентах избытка топлива  = 0.5, 1.0 и 2.0. Показано, что в области исследованных температур время задержки воспламенения в пропане растет с увеличением . Проведено сравнение полученных данных с результатами других измерений, которое показывает, что при низких температурах (T 1000 K) зависимость времени задержки воспламенения от  имеет противоположный характер.

пропан, воздух, время задержки воспламенения, ударная труба, высокие давления

Павел Владимирович Козлов, Игорь Евгеньевич Забелинский, Наталья Германовна Быкова, Геннадий Яковлевич Герасимов, Владимир Юрьевич Левашов

Том 22, выпуск 3, 2021 год



1. Dagaut P. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel // Phys. Chem. Chem. Phys. 2002. V. 4. P. 2079-2094.
2. Титова Н.С., Кулешов П.С., Старик А.М. Кинетический механизм воспламенения и горения пропана в воздухе // Физика горения и взрыва. 2011. Т. 47. № 3. С. 3-19.
3. Burnett M.A., Wooldridge M.S. An experimental investigation of flame and autoignition behavior of propane // Combust. Flame. 2021. V. 224. P. 24-32.
4. Dagaut P., Cathonnet M., Boettner J.C. Kinetic modeling of propane oxidation and pyrolysis // Int. J. Chem. Kinet. 1992. V. 24. P. 813-837.
5. Lamoureux N., Paillard C., Vaslier V. Low hydrocarbon mixtures ignition delay times investigated behind reflected shock waves // Shock Wave. 2002. V. 11. P. 309-322.
6. Lam K.Y., Hong Z., Davidson D.F., Hanson R.K. Shock tube ignition delay time measurements in propane/O2/argon mixtures at near-constant-volume conditions // Proc. Combust. Inst. 2011. V. 33. P. 251-258.
7. Gallagher S.M., Curran H.J., Metcalfe W.K., Healy D., Simmie J.M., Bourque G. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime // Combust. Flame. 2008. V. 153. P. 316-333.
8. Samimi-Abianeh O., Piehl J.A., Zyada A., Al-Sadoon M.Effect of diluents on the autoignition of propane mixtures using a rapid compression machine// Energy Fuels. 2019. V. 33. P. 3529-3538.
9. Burnett M.A., Wooldridge M.S. An experimental investigation of flame and autoignition behavior of propane// Combust. Flame. 2021. V. 224. P. 24-32.
10. Dagaut P., Cathonnet M., Boettner J.C., Gaillard F.Kinetic modeling of propane oxidation // Combust. Sci. Technol. 1987. V. 56. P. 23-63.
11. Hoffman J.S., Lee W., Litzinger T.A., Santavicca D.A., Pitz W.J. Oxidation of propane at elevated pressures: experiments and modeling // Combust. Sci. Technol. 1991. V. 77. P. 95-125.
12. Beerer D.J., McDonell V.G. An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures // Proc. Combust. Inst. 2011. V. 33. P. 301-307.
13. Sabia P., de Joannon M., Lavadera M.L., Giudicianni P., Ragucci P. Autoignition delay times of propane mixtures under mild conditions at atmospheric pressure // Combust. Flame. 2014. V. 161. P. 3022-3030.
14. Reyner P. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations // Prog. Aerospace Sci. 2016. V. 85. P. 1-32.
15. Быкова Н.Г., Забелинский И.Е., Ибрагимова Л.Б., Козлов П.В., Стовбун С.В., Тереза А.М., Шаталов О.П. Радиационные характеристики воздуха в ультрафиолетовой и вакуумной ультрафиолетовой областях спектра за фронтом сильных ударных волн // Химическая физика. 2018. Т. 37. № 2. С. 35-41.
16. Gu S., Oliver H. Capabilities and limitations of existing hypersonic facilities // Prog. Aerospace Sci. 2020. V. 113. No. 100607.
17. Hanson R.K., Davidson D.F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry // Prog. Energy Combust. Sci. 2014. V. 44. P. 103-114.
18. Ibragimova L.B., Sergievskaya A.L., Levashov V.Yu., Shatalov O.P., Tunik Yu.V., Zabelinskii I.E. Investigation of oxygen dissociation and vibrational relaxation attemperatures 4000–10800 K // J. Chem. Phys. 2013. V. 139. No. 034317.
19. Han H.S., Kim C.J., Cho C.H., Sohn C.H., Han J. Ignition delay time and sooting propensity of a kerosene aviation jet fuel andits derivative blended with a bio-jet fuel // Fuel. 2018. V. 232. P. 724-728.
20. Shao J., Choundhary R., Peng Y., Davidson D.F., Hanson R.K.A shock tube study of n-heptane< iso-octane, n-dodecane, and iso-octane/n-dodecane blends oxidation at elevated pressures and intermediate temperatures // Fuel. 2019. V. 243. P. 541-553.
21. Козлов В.Е., Титова Н.С., Торохов С.А. Численное исследование влияния добавки водорода или синтез-газа к н-декану на эмиссию вредных веществ из камеры сгорания с гомогенным режимом горения // Химическая физика. 2020. Т. 39. № 5. С. 3-15.
22. Molana M., Piehl J.A., Samimi-Abianeh O.Rapid Compression Machine Ignition Delay Time Measurements under Near-Constant Pressure Conditions // Energy Fuels. 2020. V. 34. P. 11417-11428.
23. Ramalingam A., Fenard Y., Heufer A.Ignition delay time and species measurement in a rapid compression machine: A case study on high-pressure oxidation of propane // Combust. Flame. 2020. V. 211. P. 392.
24. Burnett M.A., Wooldridge M.S. An experimental investigation of flame and autoignition behavior of propane // Combust. Flame. 2021. V. 224. P. 24.
25. Hu E., Zhang Z., Pan L., Zhang J., Huang Z. Experimental and Modeling Study on Ignition Delay Times of Dimethyl Ether /Propane /Oxygen /Argon Mixtures at 20 bar // Energy Fuels. 2013. V. 27. P. 4007-4013.
26. Козлов П.В., Акимов Ю.В., Герасимов Г.Я., Левашов В.Ю. Воспламенение пропано-воздушной смеси за отраженной волной при высоких давлениях // Теплофизика высоких температур. 2021. Т. 59. № 1. С. 11-15.
27. Экспериментальный комплекс "Ударная труба"https://istina.msu.ru/equipment/card/ 279166300/
28. A Chemical Equilibrium Program for Windows. http://www.gaseq.co.uk/
29. Tang C., Man X., Wei L., Pan L., Huang Z. Further study on the ignition delay times of propane–hydrogen–oxygen–argon mixtures: Effect of equivalence ratio // Combust. Flame. 2013. V. 160. P. 2283-2290.
30. Mathieu O., Goulier J., Gourmel F., Mannan M.S., Chaumeix N., Petersen E.L. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane // Proc. Combust. Inst. 2015. V. 35. P. 2731-2740.
31. Dagaut P., Boettner J.-C., Cathonnet M. Methane oxidation: experimental and kinetic modeling study // Combust. Sci. Technol. 1991. V. 77. P. 127-148.
32. Gauther B.M., Davidson D.F., Hanson R.K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures // Combust. Flame. 2004. V. 139. P. 300-311.
33. Gallagher S.M., Curran H.J., Metcalfe W.K., Healy D., Simmie J.M.,Bourque G.A rapid compression machine study of the oxidation ofpropane in the negative temperature coefficient regime // Combust. Flame. 2008. V. 153. P. 316-333.
34. Lund C.M., Chase L. HCT—A general computerprogram for calculating time-dependent phenomenainvolving one-dimensional hydrodynamics, transport,and detailed chemical kinetics. Lawrence LivermoreNational Laboratory Report UCRL-52504, revised,1995.
35. Lee D., Hochgreb S. Rapid compression machines: heat transfer and suppression of corner vortex // Combust. Flame. 1998. V. 114. P. 531-545.
36. Chang Y., Jia M., Liu Y., Li Y., Xie M. Development of a new skeletal mechanism for n-decane oxidationunder engine-relevant conditions based on a decoupling methodology // Combust. Flame. 2013. V. 160. P. 1315-1332.
37. Horning D.C., Davidson D.F., Hanson R.K.Study of the High-Temperature Autoignitionof n-Alkane/O2/Ar Mixtures // J. Propul. Power. 2002. V. 18. P. 363-371.
38. Penyazkov O.G., Ragotner K.A., Dean A.J., Varatharajan B.Autoignition of propane–air mixtures behindreflected shock waves // Proc. Combust. Inst. 2005. V. 30. P. 1941-1947.
39. Brown C.J., Thomas G.O. Experimental Studies of Shock-Induced Ignition andTransition to Detonation in Ethylene and Propane Mixtures // Combust. Flame. 1999. V. 117. P. 861-870.
40. Burcat A., Lifshitz A., Scheller K., Skinner G.B. Shock-tube investigation of ignition in propane-oxygen-argon mixtures // Symp. (Int.) Combust. 1971. V. 13. P. 745.
41. Zhukov V.P., Sechenov V.A., Starikovskii A.Yu.Autoignition of a Lean Propane–Air Mixture at High Pressures // Kinetics and Catalysis. 2005. V. 46. P. 319-327.
42. Cadman P., Thomas G.O., Butler P. The auto-ignition of propane at intermediate temperatures and highpressures // Phys. Chem. Chem. Phys. 2000. V. 2. P. 5411-5419.
43. Herzler J., Jerig L., Roth P. Shock-tube study of the ignition of propane at intermediate temperatures and high pressures // Combust. Sci. Technol. 2004. V. 176. P. 1627-1637.
44. Petersen E.L., Lamnaouer M., de Vries J., Curran H., Simmie J.,Fikri M., Schulz C., Bourque G. Discrepancies between shock tube andrapid compression machine ignition at low temperatures and highpressures // Shock Waves. 2009. V. 19. P 739-744.