Drag and heat transfer of metal and oxide agglomerates in flow of combustion products of solid propellant




Development of tools for modeling the motion of agglomerated particles with a complex composition and shape in a flow of combustion products is of interest for problems related to the description of the motion of the condensed phase in the internal channels of solid rocket motors. An approach is developed to simulate unsteady processes that occur when a viscous incompressible fluid flows around a particle consisting of an aluminum droplet and a condensed oxide particle attached to it. Methods for taking into account the sliding of the attached oxide particle over the surface of the aluminum droplet are pro-posed. The computational results are used to find the drag and heat transfer coefficients of a non-spherical particle at flow velocities corresponding to the formation of separation zones. The developed model is one of the components of a more general mathematical model designed for calculating two-phase flows of combustion products and created with a multi-scale approach to simulation of two-phase flows.

computational fluid dynamics, solid rocket nozzle, agglomeration, droplet


Volume 21, issue 1, 2020 year


Сопротивление и теплообмен маталл-оксидных агломератов в потоке продуктов сгорания твердого топлива

Создание средств моделирования движения частиц-агломератов, имеющих сложный состав и форму, в потоке продуктов сгорания представляет интерес для задач, связанных с описанием движения конденсированной фазы во внутренних каналах ракетных двигателей твердого топлива. Разрабатывается подход, предназначенный для моделирования нестационарных процессов, реализующихся при обтекании частицы, состоящей из капли алюминия и присоединенной к ней частицы конденсированного оксида, потоком вязкой несжимаемой жидкости. Предлагаются методы учета скольжения присоединенной частицы по поверхности основной частицы. Результаты расчетов используются для нахождения коэффициентов сопротивления и теплоотдачи частицы несферической формы при скоростях обтекания, соответствующих образованию отрывных зон. Построенная модель является одной из составных частей более общей математической модели, предназначенной для расчета двухфазных течений продуктов сгорания и построенной на основе многомасштабного подхода к расчету двухфазных течений.

вычислительная газовая динамика, двигатель, агломерация, капля


Volume 21, issue 1, 2020 year



1. Emelyanov V.N., Teterina I.V., Volkov K.N., Garkushev A.U. Pressure oscillations and instability of working processes in the combustion chambers of solid rocket motors // Acta Astronautica. 2017. Vol. 135. P. 161–171.
2. Price E.W. Combustion of metallized propellants // Progress in Astronautics and Aeronautics: Fundamentals of Solid Propellant Combustion. 1985. Vol. 90. P. 479–513.
3. Babuk V.A., Belov V.P., Hodosov V.V., Sheluhin G.G. Investigation of structure of agglomerates in combustion of aluminized condensed systems // Combustion, Explosion and Shock Waves. 1988. Vol. 24. No. 5. P. 52–56.
4. Eisel J.L., Brown B.G., Price E.W. Pressure, velocity and geometry effect on Al2O3 produced during aluminized propellant combustion // AIAA Journal. 1975. Vol. 13. No. 7. P. 913–917.
5. Olsen S.E., Beckstead M.W. Burn time measurements of single aluminum particles in steam and carbon dioxide mixtures // Journal of Propulsion and Power. 1996. Vol. 12. No. 4. P. 662–671.
6. Volkov K.N., Emelaynov V.N. Gas-particle flows. Moscow, Publishing House of Physical and Mathematical Literature, 2008. 598 p.
7. Carrasco B., Garcia de la Torre J., Zipper P. Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres // European Biophysics Journal. 1999. Vol. 28. P. 510–515.
8. Strobl S., Formella A., Poschel T. Exact calculation of the overlap volume of spheres and mesh elements // Journal of Computational Physics. 2016. Vol. 311. P. 158–172.
9. Leith В. Drag on nonspherical objects // Aerosol Science and Technology. 1987. Vol. 6. No. 2. P. 153–161.
10. Wang-yi W., Xiao-yi H. The stokes flow of the rotating double spheres and multiple spheres // Applied Mathematics and Mechanics. 1987. Vol. 8. P. 123–136.
11. Folkersma R., Stein H.N., van de Vosse F.N. Hydrodynamic interactions between two identical spheres held fixed side by side against a uniform stream directed perpendicular to the line connecting the spheres’ centres // International Journal of Multiphase Flow. 2000. Vol. 26. No. 5. P. 877– 887.
12. Ebrahimi M., Crapper M., Ooi J. Numerical and experimental study of horizontal pneumatic transportation of spherical and low-aspect-ratio cylindrical particles // Powder Technology. 2016. Vol. 293. P. 48–59.
13. Liang S.-C., Hong T., Fan L.-S. Effects of particle arrangements on the drag force of a particle in the intermediate flow regime // International Journal of Multiphase Flow. 1996. Vol. 22. No. 2. P. 285–306.
14. Verma P.L., Govardhan M. Flow behind bluff bodies in side-by-side arrangement // Journal of Engineering Science and Technology. 2011. Vol. 6. No. 6. P. 745–768.
15. Cichocki B., Hinsen K. Stokes drag on conglomerates of spheres // Physics of Fluids. 1995. Vol. 7. No. 2. P. 285–291.
16. Nir A., Acrivos A. On the creeping motion of two arbitrary-sized touching spheres in a linear shear field // Journal of Fluid Mechanics. 1973. Vol. 59. P. 209–223.
17. Derksen J.J. Flow-induced forces in sphere doublets // Journal of Fluid Mechanics. 2008. Vol. 608. P. 337–356.
18. Derksen J.J., Larsen R.A. Drag and lift forces on random assemblies of wallattached spheres in low-Reynolds-number shear flow // Journal of Fluid Mechanics. 2011. Vol. 673. P. 1–27.
19. Zhao L. Hydrodynamics of highly viscous flow past a compound particle: analytical solution // Fluids. 2016. Vol. 1. 36 (15 pages).
20. Daripa P., Pallaniaappan D. Generalized circle and sphere theorems for inviscid and viscous flows // SIAM Journal of Applied Mathematics. 2001. Vol. 63. No. 2. P. 514–540.
21. Schneider J.C., O’Neill M.E., Brenner H. On the slow viscous rotation of a body straddling the interface between two immiscible semi-infinite fluids // Mathematika. 1973. Vol. 20. No. 2. P. 175–196.
22. Radchik A.V., Paley A.V., Smith G.B., Vagov A.V. Polarization and resonant absorption of intersecting cylinders and spheres // Journal of Applied Physics. 1994. Vol. 76. No. 8. P. 4827–4835.
23. Mansfield M.L., Douglas J.F., Garboczi E.J. Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects // Physics Review E. 2001. Vol. 64. 061401 (10 pages).
24. Babuk V.A., Budny N.L. Modeling of formation of oxide in combustion of metal agglomerates // Chemical Physics and Mesoscopia. 2015. Vol. 17. No. 1. P. 39–50.
25. Babuk V.A., Низяев А.А. Formation of empty agglomerates in combustion of solid propellants // Chemical Physics and Mesoscopia. 2016. Vol. 18. No. 1. P. 5–16.
26. Tenenev V.A., Rusyak I.G., Gorohov M.M. Numerical simulation of combustion of aluminium particles in two-phase flow // Mathematical Modelling. 1997. Vol. 9. No. 5. P. 87–96.
27. Gremyachkin V.M. Theoretical models of combustion of metal particles // Physics of Aero-disersed Systems. 1987. No. 31. P. 41–52.
28. Strongin M.P., Koshelev K.B. Mathematical modeling of nonstationary effects at flow around a single burning particle // Combustion, Explosion and Shock Waves. 1993. Vol. 29. No. 3. P. 120–123.
29. French A.D., Panelli M., Lorenzo G.D., Schettino A. Combustion instability and pressure oscillation numerical simulation in a solid rocket motor // AIAA Paper. 2017. No. 4952 (25 pages).
30. Volkov K.N. Combustion of single aluminium droplet in two-phase flow // Heterogeneous Combustion. Nova Science, 2010. P. 191–260.
31. King M.K. Aluminum combustion in solid rocket motor environment // Proceedings of the Combustion Institute. 2009. Vol. 32. No. 2. P. 2107– 2114.
32. Yang J., Yoon W. Modeling of aluminum particle combustion with emphasis on the oxide effects and variable transport properties // Journal of Mechanical Science and Technology. 2010. Vol. 24. No. 4. P. 909–921.
33. Glorian J., Gallier S., Catoire L. On the role of heterogeneous reactions in aluminum combustion // Combustion and Flame. 2016. Vol. 168. P. 378–392.
34. Muller M., Davidenko D., Giovangigli V. Computational study of aluminum droplet combustion in different atmospheres // Proceedings of the 7th European Conference for Aeronautics and Space Sciences (EUCASS), 3– 6 July 2017, Milan, Italy. 17 p.
35. Volkov K.N., Emelyanov V.N., Teterina I.V. Yakovchuk M.S. Gas flows in nozzle of energy systems. Moscow, Publishing House of Physical and Mathematical Literature, 2016. 336 p.