Computational Study of the Different Waverider Configurations Aerodynamics




The current paper contains the elliptic cone waverider and inclined cone waverider aerody-namics calculations results. The comparison between the numerical and experimental data was performed for the wide range of the angles of attack and sleep angles. All results was ob-tained by the UST3D code using different Riemann solvers within the framework of the splitting method. The acceptable agreement between the present results, the thin-layer Na-vier-Stokes and also parabolized Navier-Stokes data was demonstrated.

Keywords: finite volume method, splitting methods, Riemann solvers, waveriders


Volume 21, issue 1, 2020 year


Численное моделирование аэродинамики волнолетов построенных на скачках уплотнения различной формы

В рамках настоящей работы представлены результаты систематических расчетов аэродинамических характеристик высокоскоростных летательных аппаратов – волнолетов, построенных на ударных волнах, образующихся при обтекании эллиптического или наклонного кругового конуса. Выполнено сравнение результатов численного моделирования с экспериментальными данными, полученными для различных углов атаки и скольжения. Продемонстрированы особенности совместной реализации метода расщепления по физическим процессам и одного из вариантов AUSM схемы. Проведено сравнение результатов расчетного исследования, осуществленного с использованием компьютерного кода UST3D и его модификации, со сторонними расчетными данными по аэродинамике различных конфигураций волнолетов, полученных с применением структурированных сеток, уравнений Навье-Стокса в приближении тонкого слоя, а также
параболизованных уравнений Навье-Стокса.

Ключевые слова: метод контрольного объема, расщепление по физическим процессам, распад произвольного разрыва, аэродинамика волнолетов


Volume 21, issue 1, 2020 year



References
1. Bowcutt K.G., Anderson J.D., Capriotti D. Viscous Optimized Hypersonic Waveriders
AIAA Paper 87-0272, 1987, pp.1-19 https://doi.org/10.2514/6.1987-272
2. Mazhul I.I. Teplofizika i ajeromehanika, 2007, vol.14, no.1, pp. 99-112 http://sibran.ru/journals/issue.php?ID=120101&ARTICLE_ID=126719
3. Voronin V.I., Zakharchenko V.F., Shvets A.I. PMTF, 1994, no.4, pp. 81-87 http://sibran.ru/journals/issue.php?ID=119954&ARTICLE_ID=133534
4. Vanmol D.O., Anderson J.D. Heat Transfer Characteristics of Hypersonic Waveriders with an Emphasis on the Leading Edge Effects NASA Contractor Report 189586, 1992, 128 p. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920012972.pdf
5. Cockrell Ch.E. Vehicle Integration Effects on Hypersonic Waveriders NASA-TM-109739, 1994, 132 p. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940029612.pdf
6. Kammeyer M.E., Gillum M.J. Design Validation Tests on a Realistic Hypersonic Waverider at Mach 10, 14 and 16.5 in the Naval Surface Warfare Center Hypervelocity Wind Tunnel No. 9 NSWCDD/TR-93/198, 1994, 93 p.
7. Lewis M.J., Gillum M.J. Analysis of Experimental Results on a Mach 14 Waverider with Blunt Leading Edges AIAA Paper 96-0812, 1996, pp. 1-23 https://doi.org/10.2514/6.1996-812
8. Maikapar G. I. Bodies Formed by the Stream Surfaces of Conical Flows Fluid Dynamics, 1966, vol.1, no.1, pp. 126-127 https://doi.org/10.1007/BF01016277
9. Rasmussen M.L. On Hypersonic Flow Past an Unyawed Cone AIAA Journal, 1967, vol.5,
no.8, pp. 1495-1497 https://doi.org/10.2514/3.4228
10. Rasmussen M.L. Approximation for Hypersonic Flow Past a Slender Elliptic Cone
AIAA Paper 79-0364, 1979, pp. 1-11 https://doi.org/10.2514/6.1979-364
11. Rasmussen M.L. Waverider Configurations Derived from Inclined Circular and Elliptic Cones Journal of Spacecraft and Rockets, 1980, vol.17, no.6, pp. 537-545 https://doi.org/10.2514/3.57771
12. Yoon B.-h. On-Design Solutions of Hypersonic Flows past Elliptic-Cone Derived Waveriders KSME Journal, 1992, vol.6, no.1, pp. 24-30 https://doi.org/10.1007/BF02954460
13. Rasmussen M.L. Experimental Forces and Moments on Cone-Derived Waveriders for M=3 to 5 Journal of Spacecraft and Rockets, 1982, vol.19, no.6, pp. 592-598 https://doi.org/10.2514/3.62306
14. Liao J.-R., Isaac K.M., Miles J.B., Tsai B.-J. Navier-Stokes Simulation for Cone-Derived
Waverider AIAA Journal, 1992, vol.30, no.6, pp. 1521-1528 https://doi.org/10.2514/3.11096
15. Kato H., Tannehill J.C. Numerical Calculation of Viscous Flow Over Hypersonic Waveriders
AIAA Paper 97-2292, 1997, pp. 1-11 https://doi.org/10.2514/6.1997-2292
16. Surzhikov S.T. Validation of computational code UST3D by the example of experimental aerody-namic data Journal of Physics: Conference Series, 2017, vol.815, no.12023 https://doi.org/10.1088/1742-6596/815/1/012023
17. Surzhikov S.T. Comparative Analysis of the Results of Aerodynamic Calculation of a Spherical Blunted Cone on a Structured and Unstructured Grid Journal of Physics: Conference Series, 2019, vol.1250, no.012007 https://doi.org/10.1088/1742-6596/1250/1/012007
18. Yatsukhno D.S. Computational study of the waverider aerothermodynamics by the UST3D com-puter code Journal of Physics: Conference Series, 2018, vol.1009, no.012002 https://doi.org/10.1088/1742-6596/1009/1/012002
19. Yatsukhno D.S, Surzhikov S.T. Herald of the Bauman Moscow State Technical University: Me-chanical Engineering, 2018, no.1, pp. 20-33
20. Kryuchkova A.S. Development and testing of non-viscid solver based on UST3D programming code Journal of Physics: Conference Series, 2019, vol.1250, no.012009
https://doi.org/10.1088/1742-6596/1250/1/012009
21. Jentry R.A., Martin R.E., Daly B.J. An Eulerian Differencing Method for Unsteady Compressible Flow Problems J. Comput. Phys, 1966, vol.1, no.1, pp. 87-118
https://doi.org/10.1016/0021-9991(66)90014-3
22. Shyy, W., Thakur, S.S., Ouyang, H., Liu, J., and Blosch, E. Computational Techniques for Com-plex Transport Phenomena, Cambridge University Press, 1997, 321 p.
23. Hu Z., Zha G. Simulation of 3D Flows of Propulsion Systems Using an Efficient Low Diffusion
E-CUSP Upwind Scheme AIAA Paper 2004-4082, 2004, pp. 1-12
https://doi.org/10.2514/6.2004-4082
24. A.L. Zheleznyakova, S.T. Surzhikov Calculation of a hypersonic flow over bodies of complex configuration on unstructured tetrahedral meshes using the AUSM scheme High Temperature, 2014, vol. 52, iss.2. pp. 271-281 https://doi.org/10.1134%2FS0018151X14020217
25. Silvestrov P., Surzhikov S. Calculation of aerothermodynamics for high-speed aircraft X-43 using computer code UST3D and UST3D-AUSMPW Physical-Chemical Kinetics in Gas Dynamics, 2019, vol.20, iss.4. http://chemphys.edu.ru/issues/2019-20-4/articles/865