This paper reports the results of numerical simulation of a steady-state convective flow of incompressible fluid in the gap between two coaxial cylinders. We assume that only half of the inner cylinder is heated, and the external cylinder is kept at constant temperature. It has been established that the rotation of the heater through a certain angle causes the convective plume axis to deviate. This strongly affects the flow pattern and the related heat transfer process. The dependence of the position of the temperature maximum near the surface of the outer cylinder on the orientation of the heated portion of the surface of the inner cylinder is detected. The maximum integral heat flux is observed when the heater is in its uppermost position, and the minimum heat flux is observed when the heater is located sidewise
natural convection, local heating, coaxial cylinders, steady flow
Ориентационные эффекты в задаче о теплообмене между частично нагретыми
коаксиальными цилиндрами
В работе приводится описание результатов численного моделирования стационарного конвективного течения несжимаемой жидкости в зазоре между двумя коаксиальными цилиндрами. Подогрев обеспечивается за счет одной из половин боковой поверхности внутреннего цилиндра. Внешний цилиндр поддерживается при постоянной температуре. Показано, что при повороте нагревателя отклоняется ось конвективного факела, что, в свою очередь, приводит к изменению структуры течения в зазоре и характера теплообмена в жидкости. Обнаружена зависимость положения пика температуры вблизи поверхности внешнего цилиндра от ориентации нагретого участка поверхности внутреннего цилиндра. Наибольший интегральный тепловой поток наблюдается в том случае, когда нагретая область находится сверху. Наименьший – при боковом расположении нагревателя
естественная конвекция, локальный нагрев, коаксиальные цилиндры, стационарное течение
1. C. Hausman, L. Muehlenbachs, Price regulation and environmental externalities: Evidence from methane leaks // Journal of the Association of Environmental and Resource Economists. 2019. Vol. 6. No. 1. P. 73-109. 2. Y.-D. Jo, B. J. Ahn, Analysis of hazard areas associated with high-pressure naturalgas pipelines // Journal of Loss Prevention in the Process industries. 2002. Vol. 15 No. 3. P. 179-188. 3. S. Shin, G. Lee, U. Ahmed, Y. Lee, J. Na, C. Han, Risk-based underground pipeline safety management considering corrosion effect // Journal of hazardous materials. 2018. Vol. 342. P. 279-289. 4. D. Moore, D. Newport, V. Egan, V. Lacarac, Ventilation and internal structure effects on naturally induced flows in a static aircraft wing // Applied Thermal Engineering. 2012. Vol. 32. P. 49-58. 5. C. Butler, Aircraft crown compartment thermal management: the influence of internal heat dissipating elements. PhD Thesis. 2013. 212 p. 6. P.-S. Murvay, I. Silea, A survey on gas leak detection and localization techniques // Journal of Loss Prevention in the Process Industries. 2012. Vol. 25. No. 6. P. 966-973. 7. M. Niklès, B. H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, T. Pfeiffer, Leakage detection using fiber optics distributed temperature monitoring, in: Smart Structures and Materials 2004: Smart Sensor Technology and Measurement Systems // International Society for Optics and Photonic. 2004. Vol. 5384. P. 18-26. 8. A. E. Khalifa, Pressure variation and effective sensing zone around small leaks inside water pipelines for reliable leak detection // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017. Vol. 231. No. 3. P. 590-599. 9. M. Nikles, Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection, in: Fiber optic sensors and applications VI // International Society for Optics and Photonics. 2009. Vol. 7316. P. 731602. 10. Mohitpour M., Golshan H., Murray A. Natural Gas Transmission // Pipeline Design & Construction: A Practical Approach, Third Edition. ASME press. 2007. 11. Rad A., Rashtchian D., Ahmadi M. H. E. Optimum placement of gas detectors considering voting strategy with different detection set points // Journal of Loss Prevention in the Process Industries. 2018. Vol. 55. P. 53-60. 12. D. Angeli, G. Barozzi, M. Collins, O. Kamiyo, A critical review of buoyancy-induced flow transitions in horizontal annuli // International Journal of Thermal Sciences. 2010. Vol. 49. No. 12. 2231-2241. 13. Ş. Ö. Atayılmaz, İ. Teke, Experimental and numerical study of the natural convection from a heated horizontal cylinder wrapped with a layer of textile material // International Communications in Heat and Mass Transfer. 2010. Vol. 37. No. 1. P. 58-67. 14. T. H. Kuehn, R. J. Goldstein, A parametric study of prandtl number and diameter ratio effects on natural convection heat transfer in horizontal cylindrical annuli // Journal of Heat Transfer. 1980. Vol. 102. No. 4. P. 768-770. 15. C. Cho, K. S. Chang, K. Park, Numerical simulation of natural convection in concentric and eccentric horizontal cylindrical annuli // Journal of Heat transfer. 1982. Vol. 104. No. 4. P. 624-630. 16. A. Shadlaghani, M. Farzaneh, M. Shahabadi, M. R. Tavakoli, M. R. Safaei, I. Mazinani, Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections // Journal of Thermal Analysis and Calorimetry. 2018. P. 1-14