Thermal radiation simulation of vibrationally nonequilibrium gas using k-distribution method
Method of calculating the IR radiation of vibrationally nonequilibrium gas on the basis of k-distribution was developed. Comparison of calculation of nonequilibrium radiation with the results of other authors and with the experimental data showed a satisfactory agreement. It is shown that the calculation results of the intensity of radiation on non-equilibrium methods differ significantly from equilibrium. The discrepancy increases with thre height (decreasing pressure) and can exceed the order.
vibrational nonequilibrium, IR radiation, k-distribution
Разработана методика расчета ИК излучения колебательно неравновесного газа на основе метода k-распределения. Сопоставление расчета неравновесного излучения с результатами других авторов и с экспериментальными данными показало удовлетворительное совпадение. Показано, что результаты расчета интенсивности излучения по неравновесной методике существенно отличаются от равновесной. Расхождение усиливается с ростом высоты (уменьшением давления) и может превышать порядок.
1. Молчанов А.М., Никитин П.В. Узкополосная база данных для расчета излучения продуктов сгорания с использованием k-распределения. Тепловые процессы в технике, 2014, №10, С.448-455. 2. Modest M.F. Radiative Heat Transfer. ACADEMIC PRESS, Second Edition, Hardbound, 2003, 860p. 3. Hongmei Zhang, Modest M.F. Multi-group full-spectrum k-distribution database for water vapor mixtures in radiative transfer calculations. International Journal of Heat and Mass Transfer, 2003, v.46, pp.3593–3603. 4. Wang A, Modest M.F. High-Accuracy. Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide. Journal of Quantitative Spectroscopy and Radiative Transfer. 2005, v.93, pp.245–26. 5. Ozawa T., Garrison M.B. and Levin D.A. Accurate Molecular and Soot Infrared Radiation Model for High-Temperature Flows, Journal of Thermophysics and Heat Transfer, 2007, Vol. 21, No.1, pp.19-27. 6. Лосев С. Газодинамические лазеры. — Наука Москва, 1977, 336с. 7. Scalabrin L.C. Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry Capsules //A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan. 2007. 182p. 8. Molchanov A.M. and Bykov L.V. Three-Equation K-e-Vn Turbulence Model for High-Speed Flows. AIAA Paper 2013-3181, 2013, 30p. 9. Connaire M.O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K. A Comprehensive Modeling Study of Hydrogen Oxidation. International Journal of Chemical Kinetics. 2004. Vol. 36. P.603-622. 10. Molchanov A.M. Numerical Simulation of Supersonic Chemically Reacting Turbulent Jets. 2011. AIAA Paper 2011-3211, 37p. 11. Denison J.J., Lamb W.D., Bjorndahl E.Y., Wong and Lohn P.D. Solid Rocket Exhaust in the Stratosphere: Plume Diffusion and Chemical Reactions. Journal of Spacecraft and Rockets, Vol. 31, 1994, P.435-442. 12. Blauer J.A., Nickerson G.R. A Survey of Vibrational Relaxation Rate Data for Processes Important to CO2-N2-H2O Infrared Plume Radiation // Ultrasystems, Incorporated, Technical rept. Report Number 0455177. 1973. 72p. 13. Ачасов О.В. Диагностика неравновесных состояний в молекулярных лазерах. Минск, Наука и техника, 1985, 208 с. 14. Vitkin E. I., Karelin V. G., Kirillov A. A, Suprun A. S. and Khadyka Ju. V. A Physico-Mathematical Model of Rocket Exhaust Plumes. Int. J. Heat Mass Transfer. Vol.40, No 5. Pp.1227-1241. 1997 15. Физико-химические процессы в газовой динамике. Справочник. Том 2: Физико-химическая кинетика и термодинамика//Под ред. Г.Г.Черного и С.А.Лосева - М.: Научно-издательский центр механики. 2002. 368 с. 16. Kudryavtsev N.N., Novikov S.S. "Theoretical and Experimental Investigations of I.R. Radiation Transfer in Vibrationally Nonequilibrated Molecular Gas Containing CO2 and CO", Int. J. Heat Mass Tranfer. Vol. 25, No. 10. pp. 1541-1558, 1982. 17. Герцберг Г. Колебательные и вращательные спектры многоатомных молекул. Издательство иностранной литературы, Москва, 1949, 648с. 18. Rothman, L.S. and Gordon, I.E. and Babikov, et.al. The HITRAN 2012 Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 2013, pp. 4-50. 19. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, and J. Tennyson. “HITEMP, the high-temperature molecular spectroscopic database,” // J. Quant. Spectrosc. and Rad. Transfer 111, 2139-2150 (2010). 20. S.A. Tashkun, V.I. Perevalov, J-L. Teffo, A.D. Bykov, N.N. Lavrentieva. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank. // Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 82, Issues 1–4, 15 November–15 December 2003, Pages 165–196 21. Bansal A, Modest M, Levin D. Application of k-distribution Method to Molecular Radiation in Hypersonic Nonequilibrium Flows. 2009, AIAA Paper 2009-3922, 13p. 22. Vitkin E.I., Shuralyov S. L., Tamanovich V. V. Radiation transfer in vibrationally nonequilibrium gases. International Journal of Heat and Mass Transfer. Vol. 38, No. 1, pp. 163-173, 1995 23. Avital G., Cohen Y., Gamss L., Kanelbaum Y., Macales J., Trieman B., Yaniv S., Lev M., Stricker J., Sternlieb A.. Experimental and Computational Study of Infrared Emission from Underexpanded Rocket Exhaust Plumes. Journal of Thermophysics and Heat Transfer. Vol. 15, No. 4, October–December 2001. 24. Виткин Э.И., Кириллов А.А. Радиационный перенос в движущихся объемах неравновесных молекулярных газов // 4-th Minsk International Heat and Mass Transfer Forum, 2000, Volume 2. C.144-153.