Химические реакции с участием электронно-возбужденных молекул, атомов и радикалов в газовых смесях, содержащих азот, метан и продукты их термического разложения



Chemical reactions involving electronically excited molecules, atoms, and radicals in gas mixtures containing nitrogen, methane, and the products of their thermal decomposition

An analysis of the kinetic processes involving electronically excited components in gas media containing nitrogen and methane behind the shock wave front is carried out. A set of electronically excited components to be taken into account in modeling the processes of the entry of flying vehicles into the atmosphere of Titan has been determined. A data base on the rate constants of reactions with the participation of electronically excited particles in high-temperature methane-nitrogen mixtures is demonstrated.


Том 13, выпуск 2, 2012 год



Проведен анализ кинетических процессов с участием электронно-возбужденных компонентов в газовых средах, содержащих азот и метан, за фронтом ударной волны. Определен набор электронно-возбужденных компонентов, которые следует учитывать при моделировании процессов вхождения летательных аппаратов в атмосферу Титана. Демонстрируется база данных констант скоростей реакций с участием электронно-возбужденных частиц в высокотемпературных метано-азотных смесях.

электронно-возбужденные компоненты, константы скоростей реакций, метан, азот, термическое разложение


Том 13, выпуск 2, 2012 год



1. Gökçen T. N2-CH4-Ar chemical kinetic model for simulations of atmospheric entry to Titan// AIAA Paper 2004-2469. 2004.
2. Olejniczak J., Wright M., Prabhu D., at al. An analysis of the radiative heating environment for aerocapture at Titan, AIAA Paper 2003-4953, 2003.
3. Лосев С.А., Ярыгина В.Н. Процессы электронного энергообмена в высокотемпературном воздухе//Химическая физика. Т. 28. №7. 2009. С.70-74
4. Лосев С.А., Ярыгина В.Н. Процессы в высокотемпературном воздухе с участием молекул и атомов в возбужденных электронных состояниях// ТВТ. Т. 48 №.1 2010. С. 44-51.
5. Черный Г.Г., Лосев С.А. Разработка теплозащитных систем для межпланетных полетов//Итоговый научно-технический отчет по проекту МНТЦ №036-96. 1999.
6. Залогин Г.Н., Козлов П.В., Л.А. Кузнецов и др. Излучение смеси CO2-N2-Ar в ударных вол волнах:эксперимент и теория// ЖТФ.Т.71.№6. 2001. С.10-16.
7. Gorelov V.A., Gladyshev M.R., Kireev F.N at al. Computational and Experimental Investigations of Ionization near Hypersonic Vehicles //J. Thermophysics and Heat Transfer. V. 12. № 2. 1998. P. 172-180.
8. Dilecce G., Ambrico P. F., Scarduelli G. at al. CN(B2Σ+) formation and emission in a N2–CH4 atmospheric pressure dielectric barrier discharge // Plasma Sources Sci. Technol. 18. 2009. 015010
9. Pintassilgo C. D., Cernogora G., Loureiro J. Spectroscopy study and modelling of an afterglow created by a low-pressure pulsed discharge in N2–CH4// Plasma Sources Sci. Technol. V.10. 2001. Р. 147–161.
10. Horvath G., Skalny J. D., Mason N. J. at al. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan’s atmosphere// Plasma Sources Sci. Technol. V.18. 2009. 034016.
11. Herron, J. T., Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A3Σu+) in the Gas Phase. J. Phys. Chem. Ref. Data. V. 28. N 5. 1999. Р. 1453-1483; Herron J.T., Green D.S. Chemical Kinetics Database and Predictive Schemes for Nonthermal Humid Air Plasma Chemistry // Plasma Chemistry and Plasma Processing. V.31. N.3. 2001.Р.459-481.
12. Magin T.E., Caillaunt L., Bourdon A., Laux C.O. Nonequilbrium radiation modeling for Hyygens entry// Pros 3d Int. Workshop Planetary Probe, Anavysson, Greece, 2006 (ESA.SP-607).
13. Donovan R. J., Husain D. Recent advances in the chemistry of electronically excited atoms//Chemical Reviews. V. 70, N. 4. 1970. Р.489-516.
14. Gordiets B. F., Ferreira C. M., Guerra V. L. at al. Kinetic model of a low-pressure N2–O2 flowing glow discharge//IEEE Trans. Plasma. Sci. V.23. 1995. Р.750–768.
15. Starik A.M., Titova N.S., Arsentiev I.V. Comprehensive analysis of the effect of atomic and molecular metastable state excitation on air plasma composition behind strong shock waves//Plasma Sources Sci. Technol. Vol. 19. 2010.015007.
16. Starikovskaia S. M., Starikovskii A. Yu., Zatsepin D. V. Hydrogen oxidation in stoichiometric hydrogen–air mixture in highspeed ionization wave// Combust. Theory Modelling V.5. 2001. P.97–129.
17. Шахатов В.А., Лебедев Ю.А. Исследование кинетики возбуждения N2(A), N2(C), N2(B) в азотной плазме газовых разрядов методами эмиссионной спектроскопии и численного моделирования//Химия высоких энергий. Т. 42. №3. 2008. С. 207-241.
18. Takayanagi T., Kurosaki Yu., Kei Sato at al Kinetic Studies on the N(2D, 2P) + CH4 and CD4 Reactions: The Role of Nonadiabatic Transitions on Thermal Rate Constants // J. Phys. Chem. A. V.103. 1999. P.250-255.
19. Kei Sato, K. Misawa, Ya. Kobayashi, at al Measurements of Thermal Rate Constants for the Reactions of N(2D,2P) with C2H4 and C2D4 between 225 and 292 K// J. Phys. Chem. A, V. 103. 1999. P.8650-8656
20. Levaton J., Amorin J.and Franco D. Experimental and calculated N(4S) temporal density profile in the N2 flowing post-disharge// J. Phys. D6 Appl. Phys. V.38. 2005. P.2204-2210.
21. Halpern J.B., Huang Yu., Titarchuk N. Radiative and collicional processes in CN A2Π// Astrophys. Space Sciense. V.236. 1996. P.11-17.
22. Smith G. P., Park C., Schneiderman J., Luque J. C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames//Combustion and Flame V.141. 2005. P. 66–77.
23. Baulch D. L., Bowman C. T., Cobos C. J. at al. Evaluated Kinetic Data for Combustion Modeling: Supplement II//J. Phys. Chem. Ref. Data, Vol. 34, No. 3, 2005 P.757-1397
24. Richmond G., Costen M. L., McKendrick K. G. Collision-Partner Dependence of Energy Transfer between the CH A2Δ and B2Σ- States. // J. Phys. Chem. A 2005. V. 109. P. 542-553
25. Adam L., Hack W., McBane G. C. at al. Exploring Renner-Teller induced quenching in the reaction H(2S)+NH(a 1Δ):A combined experimental and theoretical study// J. Chem. Phys. 2007. V.126, 034304
26. K. Schofield The enigmatic mechanism of the flame ionization detector: Its overlooked implications for fossil fuel combustion modeling// Progress in Energy and Combustion Science 2008. V.34 P. 330–350
27. Cooper J.L., Whitehead J.C. Collisional removal rates for electronically excited CH radicals B2Σ- and C2Σ+//J. Chem. Soc. Faraday Trans. 1992. V.88, № 16. P. 2323-2327
28. Nelson H. H., McDonald J. R., Alexander M. H. Temperature Dependence of the Collisional Quenching of NH(a1Δ) by N2, 02, CO, and Xe.// J. Phys. Chem. 1990. V. 94, P. 3291-3294
29. Hack W., Rathmann K.Laser Induced Fluorescence Studies of the Reactions of NH(a1Δ) with NO and HCN// J. Phys. Chem. 1990. V. 94, No. 10. P.4155- 4160
30. Adam L., Hack W., McBane G. C., Zhu H., Qu Z.-W. et al. Exploring Renner-Teller induced quenching in the reaction H(2S)+NH(a1): A combined combined experimental and theoretical study// J. Chem. Phys. 2007. V. 126, 034304
31. Huang C., Li Z., Zhao D., Xin Y., Pei L., Chen C., Chen Y. Kinetics of C2 (a3Πu) radical reactions with NO, N2O, O2, H2 and NH3 // Chinese Science Bulletin 2004 Vol. 49 No. 5 438-442
32. Tezaki A., Okada S., Matsui H. Examination of the product channels in the reactions of NH(a1Δ) with H2 and D2// J. Chern. Phys. 1993. V. 98, No5. P. 3876- 3883
33. L. Adam, W. Hack, M. Olzmann The rates of the elementary reactions of NH(a1Δ) with NH3 and HN3 // Z. Phys. Chem. 2005. V. 219, P. 197-211
34. Taherian M. R., Slanger T. G. Quenching of CN(A2Π, v=0,1) by O2, H2, N2, NO and CO2 // J. Chem. Phys. 1985. V. 82, No. 5. P. 2511-2512
35. Hack W., Ratbmann K. Collision-Induced Intersystem Crossing of NH(a1Δ, v’’=0,l) by N, and Xe: Temperature Dependence (N2) and Product States (N2, Xe).// J. Phys. Chem. 1992. V. 96, P. 47-52
36. Bohn B., Stuhl F. Quenching and Relaxation of Vibrational Levels of NH/ND(a1Δ,v)// J. Phys. Chem. 1993. V. 97, P. 7234-7238
37. Defazio P., Petrongolo C., McBane G. C., Adam L., et al. Relaxation of NH(a1Δ, v=1) in Collisions with H(2S): An Experimental and Theoretical Study// J. Phys. Chem. A 2009. V. 113, P. 14458–14464
38. Schofield K. Critically Evaluated Rate Constants for Gaseous Reactions of Several Electronically Excited Species// J. Phys. Chem. Ref. Data, 1979. V. 8, No. 3. P. 723-798
39. K.H. Becker, B. Donner, C.M. Freitas, at al. Kinetics of the C2(a3Πu) Radical Reacting with Selected Molecules and Atoms// Z. Phys. Chem. 2000. V.214, No. 4. P. 503-510
40. Суржиков С.Т. Тепловое излучение газов и плазмы. М.: Изд-во МГТУ им. Н.Э.Баумана. 2004. 544 с.
41. Суржиков С.Т. Оптические свойства газов и плазмы. М.: Изд-во МГТУ им. Н.Э.Баумана. 2004. 576 с.
42. Суржиков С.Т. Физическая механика газовых разрядов. М.: Изд-во МГТУ им. Н.Э.Баумана. 2006. 522 с.
43. Surzhikov S.T. Physico-chemical kinetics and spectral radiation of strong shock waves. Proceeding of Intern. Conf. on Combustion and Detonation, Zeldovich Memorial II, PC-Publication. Moscow. 2004.