Application of method of laser-induced incandescence to analysis of optical properties of growing particles
The evidence of the change of complex refractive index function E(m) of carbon and iron nanoparticles as a function of their size was found in two-color time resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed during acetylene pyrolisis behind a shock wave and iron particles were synthesized by pulse Kr-F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were determined through the fitting of two independently measured values of particle heat up temperature, measured by two color pyrometry and from known laser pulse energy and E(m) variation. Small carbon particles of about 1-14 nm in diameter had a low value of E(m) ~ 0.05-0.07 which tends to increase up to a value of 0.2-0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E(m) rise from ~ 0.1 for particles 1-3 nm in diameter up to ~ 0.2 for particles > 12 nm in diameter.
Исследована зависимость значения функции коэффициента преломления E(m) от размера углеродных и железных наночастиц методом двухлучевой пирометрии и время-разрешенной лазерно-индуцированной инкандесценции. Рост углеродных наночастиц был исследован при пиролизе 3% ацетилена в аргоне за отраженными ударными волнами. Железные наночастицы были синтезированы при импульсной УФ фотодиссоциации Fe(CO)5 в кварцевом реакторе при комнатной температуре. Величины функции коэффициента преломления наночастиц были найдены при сравнении двух значений температуры максимального нагрева наночастиц, определенных методом двухлучевой пирометрии и при помощи модели ЛИИ, с использованием известной энергии лазерного импульса. Установлено, что маленькие углеродные наночастицы диаметром 1-14 нм имеют низкое значение E(m) ~ 0.05-0.07, которое увеличивается до значений 0.2-0.25 в процессе роста наночастиц до 20 нм. Аналогичная зависимость функции коэффициента преломления от размера была найдена для железных наночастиц, при этом наблюдалось увеличение значений E(m) от ~ 0.1 для наночастиц диаметром 1-3 нм до значений ~ 0.2 для наночастиц > 12 нм в диаметре.
1. Vander Wal R.L., Dietrich D.L. Laser-induced incandescence applied to droplet combustion // Appl. Opt. V.34. 1995. P. 1103.
2. Ni T., Pinson J.A., Gupta S., Santoro R.J. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence // Appl. Opt. V. 34. 1995. P. 7083.
3. Snelling D.R., Smallwood G.J., Liu F., Gülder Ö. L., Bachalo W.D. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity // Appl. Opt. V.44. №31. 2005. P. 6773.
4. Choi M.Y., Jensen K.A. Calibration and correction of laser-induced incandescence for soot volume fraction measurements // Comb. and Flame. V.112. 1998. P. 485.
5. Michelsen H.A. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles // J. Chem. Phys. V. 118. 2003. P. 7012.
6. Haynes B.S. Wagner H.Gg. Soot formation // Progr. Energy Combust. Sci. V.7. 1981. P. 229.
7. Hendy S.C., Awasthi A., Schebarchov D. Molecular dynamics simulations of nanoparticles // Int. J. Nanotechnology. V. 6. 2009. P. 274.
8. Ding F., Bolton K., Rosen A. Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth // J. Vac. Sci. Technol. A V. 22. №4. 2004. P. 1471.
9. Ding F., Bolton K., Rosen A. Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study // Phys. Review B. V. 70. №7. 2004. P. 075416.
10. Лихачев В.Н., Астахова Т.Ю., Виноградов Г.А., Алымов М.И. Аномальная теплоемкость наночастиц // Химическая физика. Т. 26. №1. 2007. С. 89.
11. Schulz Ch., Kock B., Hofmann M., Michelsen H., Will S., Bougie B., Suntz R., Smallwood G. Laser-induced incandescence: resent trends and current questions // Appl. Phys. B. V. 83. 2006. P. 333.
12. Minutolo P., Gambi G., D’Alessio A. Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit // Proc. of the Combustion Institute. V. 27. 1998. P. 1461.
13. Emelianov A., Eremin A., Jander H., Wagner H.Gg., Borchers Ch. Spectral and structural properties of carbon nanoparticle forming in C3O2 and C2H2 pyrolysis behind shock waves // Proc. of the Combustion Institute. V. 29. 2002. P. 2351.
14. Basile G., Rolando A., D’Alessio A., D’Anna A., Minutolo P. Coagulation and carbonization processes in slightly sooting premixed flames // Proc. of the Combustion Institute. V. 29. 2002. P. 2391.
15. D’Anna A, Rolando A., Allouis C., Minutolo P., D’Alessio A. Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame // Proc. of the Combustion Institute. V. 30. 2005. P. 1449.
16. Wang H., Formation of nascent soot and other condensed-phase materials in flames // Proc. of the Combustion Institute. V. 33. 2011. P. 41.
17. Bladh H., Johnsson J., Olofsson N.-E., Bohlin A., Bengtsson P.-E. Optical soot characterization using two-color laser induced-incandescence (2C-LII) in the soot growth region of a premixed flat flame // Proc. of the Combustion Institute. V. 33. 2011. P. 641.
18. Starke R., Kock B., Roth P. Nano-particle sizing by laser-induced incandescence (LII) in a Shock Wave Reactor // Shock Waves. V. 12. 2003. P. 351.
19. Woiki D., Giesen A., Roth P. Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves // Proc. of the Combustion Institute. V. 28. 2000. P. 2531.
20. Starke R., Kock B., Roth P., Eremin A., Gurentsov E., Shumova V., Ziborov V. Shock wave induced carbon particle formation from CCl4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII) // Comb. and Flame. V. 132. 2003. P. 77.
21. Eremin A .V., Gurentsov E. V., Hofmann M., Kock B., Schulz Ch. TR LII for sizing of carbon particle forming at room temperature // Appl. Phys. B. V. 83. 2006. P. 449.
22. Eremin A.V., Gurentsov E.V., Kock B., Schulz Ch. Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature // J. Phys. D: Applied Physics. V. 41. №5. 2008. P. 055203.
23. Snelling D., Liu F., Smallwood G., Gülder Ö. Determination of the soot absorption function and thermal accommodation coefficient using low fluence LII in a laminar coflow ethylene diffusion flame Comb. and Flame. V. 136. 2004. P. 180.
24. Kock B., Kayan C., Knipping J., Ortner H.R., Roth P. Comparison of LII and TEM sizing during synthesis of iron particle chains // Proc. of the Combustion Institute. V. 30. 2004. P. 1689.
25. Liu F., Daun K. J., Snelling D.R., Smallwood G.J. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence // Appl. Phys. B. V. 83. 2006. P. 355.
26. Michelsen H.A., Liu F., Kock B., et al. Modelling laser-induced incandescence of soot: a summary and comparison of LII models // Appl. Phys. B. V. 87. 2007. P. 503.
27. Smallwood G.J., Snelling D.R., Liu F., Gülder Ö.L. Clouds Over Soot Evaporation: Errors in Modeling Laser-Induced Incandescence of Soot // Transactions of the ASME. V. 123. 2001. P. 814.
28. Roth P., Filippov A.V. In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination // J. Aerosol. Sci. V. 27.№1. 1996. P. 95.
29. Filippov A.V., Markus M.W., Roth P. In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination // J. Aerosol Sci. V. 30. №1. 1999. P. 71.
30. Гуренцов Е.В., Еремин А.В. Измерение размеров углеродных и железных наночастиц методом лазерно-индуцированной инкандесценции // TBT. Т. 47. №5. 2011. С. 687..
31. D’Alessio A., D’Anna A., Minutolo P., Sgro L.A., Violi A. On the relevance of surface growth in soot formation in premixed flames // Proc. of the Combustion Institute. V. 28. 2000. P. 2547.
32. De Iuliis S., Migliorini F., Cignoli F., Zizak G. Peak soot temperature in laser-induced incandescence measurements // Appl. Phys. B. V. 83. 2006. P. 397.
33. Jiang Q., Chen Z.P. Thermodynamic phase stabilities of nanocarbon // Carbon. V. 44. №1. 2006. P. 79.