Interaction of iron atoms with molecular oxygen
The results of experimental and theoretical studies of the interaction of iron atoms with molecular oxygen are presented. It was demonstrated that the reaction simultaneously proceeds through two channels, a recombination one, with the formation of FeO2, and an exchange one, with the formation of FeO+O. The rate constants of these reactions, as well as that of the thermal dissociation of FeO2 were determined. Under the assumption that all the reaction proceed via the long-lived complex FeO2*, an analysis of these processes was performed within the framework of the RRKM theory. An examination of the available thermochemical and kinetic data made it possible to estimate the rate constants for some reactions involving the higher iron oxides, FeO3 и FeO4.
Представлены результаты экспериментально-теоретического исследования взаимодействия атомов железа с молекулярным кислородом. Показано, что реакция протекает одновременно по двум каналам − рекомбинационному − с образованием FeO2 − и обменному, с образованием FeO+O. Измерены константы скорости реакции для этих каналов, а также константа скорости термической диссоциации FeO2. В предположении, что все реакции протекают через долгоживущий комплекс FeO2*, проведен анализ этих процессов в рамках теории РРКМ. На основе термохимических и кинетических данных, представленных в литературе, оценены константы скорости некоторых реакций с участием высших окислов железа FeO3 и FeO4.
1. Matsuda S. Gas Phase Homogeneous Catalysis in Shock Waves. II. The oxidation of carbon monoxide by oxygen in the presence of iron pentacarbonyl // J. Chem. Phys. 1972. V. 57. No. 2. P. 807–812.
2. Haynes В.S., Wagner H.Gg. Soot formation // Prog. Energy Combust. Sci. 1981. V. 7. No. 4. P. 229–273.
3. Babushok V., Tsang W., Linteris G.T., and Reinelt D. Chemical limits to flame inhibition // Combust. Flame. 1998. V. 115. No. 4. P. 551–560.
4. Kellogg C.B. and Irikura K.K. Gas-phase thermochemistry of iron oxides and hydroxides: Portrait of a superefficient flame suppressant // J. Phys. Chem. A. 1999. V. 103. No. 8. P. 1150–1159.
5. Lissianski V.V., Maly P.M., Zamansky V.M., and Gardiner W.C. Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources // Ind. Eng. Chem. Res. 2001. V. 40. No. 15. P. 3287–3293.
6. Plane J.M.C. Atmospheric chemistry of meteoric metals // Chem. Rev. 2003, V. 103. No. 12. P. 4963–4984.
7. Helmer M., Plane J.M.C. Kinetic study of the reaction between Fe and O3 under mesospheric conditions // J. Chem. Soc., Faraday Trans. 1994. V. 90. No. l. P. 31–37.
8. Helmer M., Plane J.M.C. Experimental and theoretical study of the reaction Fe + O2+ N2 = FeO2+ N2 // J. Chem. Soc., Faraday Trans. 1994. V. 90. No. l. P. 395–401.
9. Rollason R.J. and Plane J.M.C. The reactions of FeO with and O3, H2, H2O, O2, and CO2 // Phys. Chem. Chem. Phys. 2000. V. 2. P. 2335–2343.
10. Rosenberg C.W., Wray J.K.L. Shock tube studies on Fe(CO)5 + O2: 11-μ FeO emission and kinetics // J. Quant. Spectroscop. Radial. Transfer. 1972. V. 12. No. 4. P. 531–547.
11. Fontijn A. and Kurzius S.C. Tubular fast-flow reactor studies at high temperatures. 1. Kinetics of the Fe/O2 reaction at 1600 K // Chem. Phys. Lett. 1972. V. 13. No. 5. P. 507–510.
12. Заслонко И.С., Смирнов В.Н. Кинетика окисления атомов железа при температурах 900–2300 K // Физика горения и взрыва, 1980. Т. 16. № 1. С. 143–144.
13. Смирнов В.Н. Распад летучих металлосодержащих соединений и реакции продуктов их распада. Дис. ... канд. физ.-мат. наук. М.: ИХФ АН СССР, 1979. 142 с.
14. Термодинамические свойства индивидуальных веществ. Справочник/Под ред. В.П. Глушко. М.: Наука, 1978.
15. Термодинамические свойства индивидуальных веществ: Элементы Zn, Cu, Fe, Co, Ni и их cоединения // http:www.chem.msu.su/rus/tsiv/welcome.html.
16. Mitchell S.A. and Hackett P.A. Chemical reactivity of iron atoms near room temperature // J. Chem. Phys. 1990 V. 93. No. 11. 7822–7829.
17. Parnis J.M., Mitchell S.A., Hackett P.A. Transition metal atom reaction kinetics in the gas phase: association and oxidation reactions of 7S3, chromium atoms // J. Phys. Chem. 1990. V. 94. No. 21. P. 8152-8169.
18. Смирнов В.Н. Термическая диссоциация газообразных гидридов и металлоорганических соединений и реакции продуктов их распада . Дисс. на соискание учен. степ. докт. физ.-мат. наук М.: ИХФ РАН, 2008, 490 с.
19. Millikan R.C. and White D.R. Systematics of Vibrational Relaxation // J. Chem. Phys. V. 39. No. 11. P. 3209–3213.
20. Baulch D.L., Bowman C.T., Cobos C.J., et al., Evaluated Kinetic Data for Combustion Modeling: Supplement II // J. Phys. Chem. Ref. Data. 2005. V. 34. No. 3. P. 757–1397.
21. Giesen A., Woiki D., Herzler J., and Roth P. Oxidation of Fe atoms by O2 based on Fe- and O-concentration measurements // Proc. 29th Int. Symp. on Combust. Pittsburg, 2002. P. 1345–1352.
22. Self D.E. and Plane J. M. C. A kinetic study of the reactions of iron oxides and hydroxides relevant to the chemistry of iron in the upper mesosphere // Phys. Chem. Chem. Phys. 2003. V. 5. No. 7. P. 1407–1418.
23. Chestakov D.A., Parker D.H., and Baklanov A.V. Iron monoxide photodissociation // J. Chem. Phys. 2005. V. 122. No. 8. P. 4302–4304.
24. Ferguson F.T., Nuth J. A. III, and Johnson N. M. Thermogravimetric measurement of the vapor pressure of iron from 1573 K to 1973 K // J. Chem. Eng. Data. 2004. V. 49. No. 3. P. 497–501.
25. Luther K. and Troe J. // Weak collision effects in dissociation reactions at high temperatures // 17th Int. Symp. on Combustion. Pittsburgh, 1978. P. 535–542.
26. NIST Chemical Kinetics Database Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.2 Data Version 2009.01/http: // www.kinetics.nist.gov/kinetics/index.jsp.
27. Troe J. Theory of thermal unimolecular reactions at low pressures II. Strong collision rate constants. Applications. J. Chem. Phys., 1977. V. 66. No. 11. P. 4758–4775.
28. Smith I.W.M. The role of electronically excited states in recombination reactions // Int. J. Chem. Kinet. 1984. V. 16. No. 4. P. 423–443.
29. Cobos C.J., Hippler H., Troe J. Falloff curves of the recombination reaction O + SO +M → SO2 + M in a variety of bath gases // J. Phys. Chem. 1985. V. 89. No. 9. P. 1778–1783.
30. Dove J.E., Hippler H., Troe J. Direct study of energy transfer of vibrationally highly excited CS2 molecules // J. Chem. Phys. 1985. V. 82. No. 4. P. 1907–1919.
31. Cao Z., Duran M., and Solà M. Low-lying electronic states and molecular structure of FeO2 and FeO2- // Chemical. Phys. Lett. 1997. V. 274. Nos. 5–6. P. 411–421.
32. García-Sosa A.T. and Castro M. Density functional study of FeO2, FeO2+, and FeO2- // Intern. J. Quant. Chem. 2000. V. 80. No. 3. P. 307–319.
33. Plane J. M. C. and Rollason R. J. A study of the reactions of Fe and FeO with NO2 and the structure and bond energy of FeO2 // Phys. Chem. Chem. Phys. 1999. V. 1. P. 1843–1849.
34. Gutsev G.L., Khanna S.N., Rao B.K., and Jena P. Electronic structure and properties of FeOn and FeOn− Clusters // J. Phys. Chem. A. 1999. V. 103. No. 29. 5812–5822.
35. Gutsev G.L., Rao B.K., and Jena P. Systematic study of oxo, peroxo, and superoxo isomers of 3d-metal dioxides and their anions // J. Phys. Chem. A. 2000. V. 104, No. 51. 11961–11971.
36. Ахмадов У.С., Заслонко И.С., Смирнов В.Н. Механизм и кинетика взаимодействия атомов Fe, Cr, Mo, и Mn с молекулярным кислородом // Кинетика и катализ. 1988. Т. 29. № 2. С. 291–297.
37. Hildenbrand D.L. Thermochemistry of molecular FeO, FeO+, and FeO2 // Chem. Phys. Letters. 1975. V. 34. No. 2. P. 352–354.
38. Schröder D., Fiedler A., Schwarz J., and Schwarz H. Generation and characterization of the anionic, neutral, and cationic iron dioxygen adducts [FeO2] in the gas phase // Inorg. Chem. 1994. V. 33. No. 22. P. 5094–5100.
39. Abramowitz S., Aquista N., Levin I.W. Infrared spectra of matrix isolated FeO2: Evidence for a cyclic iron–oxygen complex // Chem. Phys. Lett. 1977. V. 50. No. 3. P. 423–426.
40. Chang S., Blyholder G., Fernandez J. Iron–oxygen interactions in an argon matrix // Inorg. Chem. 1981. V. 20. No. 9. P. 2813–2817.
41. Серебренников Л.В. ИК-спектры продуктов реакции атомов железа с кислородом в матрице // Вестн. Моск. Ун-та. Сер. 2, Химия. 1988. Т. 29. № 5. С. 451–455.
42. Fanfarillo M., Downs A.J., Greene T.M., and Almondlc M.J. Photooxidation of matrix-isolated iron pentacarbonyl. 2. binary iron oxide reaction products and the overall reaction mechanism // Inorg. Chem. 1992. V. 31, No. 13. 2973–2979.
43. Chertihin G.V., Saffel W., Yustein J.T., Andrews L., Neurock M., Ricca A., and Bauschlicher C.W., Jr. Reactions of laser-ablated iron atoms with oxygen molecules in condensing argon. infrared spectra and density functional calculations of iron oxide product molecules // J. Phys. Chem. 1996. V. 100. No. 13. P. 5261–5273.
44. Andrews L., Chertihin G.V., Ricca A., and Bauschlicher C.W., Jr. Reactions of laser-ablated iron atoms with oxygen molecules: matrix infrared spectra and density functional calculations of OFeO, FeOO, and Fe(O2) // J. Am. Chem. Soc. 1996. V. 118. No. 2, P. 467–470.
45. Gong, Y., Zhou M., and Andrews L., Formation and characterization of the photochemically interconvertible side-on and end-on bonded dioxygen–iron dioxide complexes in solid argon // J. Phys. Chem. A. 2007. V. 111. No. 47. 12001–12006.
46. Quack M., Troe J. Unimolecular reactions and energy transfer of highly excited molecules. reaction kinetics. Specialist periodical reports / Eds. Ashmore P.O., Donovan R.J. L.: The Chemical Society, 1977. V. 2. Ch. 5. P. 175.
47. Merer A.J. Spectroscopy of the diatomic 3d transition metal oxides // Annu. Rev. Phys. Chem. 1989. V. 40. P. 407–438.
48. Jacobsont D.B. and Freiser B.S. Transition-metal cluster ions in the gas phase. Oxide chemistry of dimeric and trimeric clusters containing iron and cobalt // J. Am. Chem. Soc. 1986. V. 108. No. 1. P. 27–30.
49. Reilly N.M., Reveles J.U., Johnson G.E., Khanna S.N., and Castleman A.W., Jr. Experimental and theoretical study of the structure and reactivity of Fe1-2O≤6- clusters with CO // J. Phys. Chem. A 2007. V. 111. No. 20. P. 4158–4166.
50. Wu H., Desai S.R., and Wang L-S. Observation and photoelectron spectroscopic study of novel mono- and diiron oxide molecules: FeOy− (y = 1–4) and Fe2Oy− (y = 1–5) // J. Am. Chem. Soc. 1996. V. 118. P. 5296–5301.
51. Левич В.Г. Введение в статистическую физику. М.: ГИТТЛ, 1954, 528c.
52. Schröder D. Gaseous Rust: Thermochemistry of neutral and ionic iron oxides and hydroxides in the gas phase // J. Phys. Chem. A 2008. V. 112. No. 50. P 13215–13224.