Interaction of the Fe, Cr, and Mo atoms with oxygen-containing molecules NO, N2O, CO2, NO2, AND SO2

The results of experimental studies of the reaction of atoms of three transition metals with various oxygen-containing oxidizers, NO, N2O, CO2, NO2 и SO2, are presented. The rate constants for these reactions are measured, many for the first time. The results obtained are in close agreement with the published low-temperature measurements. it was demonstrated that the spin-forbidden reactions have an additional activation barrier. At the same time, increases in the heat of reaction and electronegativity of the oxidizer facilitate the occurrence of reactions of this type. In passing from 3d to 4d shells (from Cr to Mo) the reactivity of the atom increases.

Volume 8, 2009 year

Взаимодействие атомов Fe, Cr и Mo c кислородосодержащими молекулами NO, N2O, CO2, NO2 И SO2

Представлены результаты экспериментального исследования реакций атомов трех переходных металлов, Fe, Cr и Mo, с различными кислородосодержащими окислителями: NO, N2O, CO2, NO2 и SO2 Измерены константы скорости этих реакций – многие впервые. Результаты находятся в хорошем согласии с измерениями при низких температурах. Показано, что запрет по спину приводит к дополнительному увеличению высоты активационного барьера, в то время как увеличение теплоты реакции и электроотрицательности окислителя способствуют протеканию данного типа реакций. При переходе от 3d оболочки к 4d оболочке (от Cr к Mo), реакционная способность атома увеличивается.

Volume 8, 2009 year

1. Plane J.M.C. Atmospheric chemistry of meteoric metals // Chem. Rev. 2003, V. 103. No. 12. P. 4963−4984.
2. Deguillaume L., Leriche M., Desboeufs K., Mailhot G., George C., and Chaumerliac N. Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters // Chem. Rev. 2005. V. 105. No. 9. P. 3388−3431.
3. Yu S. Aerosol behavior in chromium waste incineration // China Particuology. 2003. V. 1. No. 2. P. 47−51.
4. Linteris G.T., Rumminger M.D., and Babushok V.I. Catalytic inhibition of laminar flames by transition metal compounds // Prog. Energy Combust. Sci. 2008. V. 34. No. 3. P. 288−329.
5. Shin D.N., Matsuda Y., and Bernstein E.R. On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization // J. Chem. Phys. 2004. V. 120. No. 9. P. 4150−4156.
6. Shin D.N., Matsuda Y., and Bernstein E.R. On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization // J. Chem. Phys. 2004. V. 120. No. 9. P. 4157−4164.
7. Linak W.P., Wendt J.O.L. Toxic metal emissions from incineration: Mechanisms and control // Prog. Energy Combust. Sci. 1993. V. 19. No. 2. P. 145−183.8.
8. Смирнов В.Н. Термическая диссоциация газообразных гидридов и металлоорганических соединений и реакции продуктов их распада . Дисс. на соискание учен. степ. докт. физ.-мат. наук М.: ИХФ РАН, 2008, 490 с.
9. Термические свойства веществ. Справочник/Под ред. В.П. Глушко. Вып. VII. Ч. 2. M.: АН CCCP ВИНИТИ, ИВТ АН СССР, 1974.
10. Львов Б.В. Атомно-абсорбционный спектральный анализ. М.: Наука, 1966.
11. Acuna A.U. and Husain D. Kinetic Study of the Collisional Quenching of Electronically Excited Phosphorus Atoms, P(32DJ, 32PJ), by Polyatomic Molecules // J. Chem. Soc. Faraday Trans. 2. 1973. V. 69. P. 585−590.
12. Заслонко И.С, Смирнов В.Н. Кинетика окисления атомов железа при температурах 900−2300 K // Физика горения и взрыва, 1980. Т. 16. № 1. С. 143−144.
13. Термодинамические свойства индивидуальных веществ. Справочник/Под ред. В.П.Глушко. М.: Наука, 1978.
14. Справочник. Термодинамические свойства индивидуальных веществ. Т. 4. Ч. 2. M.: Наука, 1982. 326 с.
15. McBride B.J., Zehe M.J., Gordon S. Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. Report: NASA/TP-2002-211556, Glenn Research Center, Cleveland, Ohio, 2002.
16. Shim I. and Gingerich K.A. All-electron ab initio investigation of the electronic states of the MoN molecule // J. Molec. Structure (Theochem). 1999. V. 460. P. 123−136.
17. Parnis J.M., Mitchell S.A., Hackett P.A. Transition metal atom reaction kinetics in the gas phase: Association and oxidation reactions of 7S3 chromium atoms J. Phys. Chem. 1990. V. 94. No. 21. P. 8152−8160.
18. Wakabayashi, T. Nakai, Y. and Ishikawa, Y. Absolute rate constants of Mo2(X1Σg+) and Mo(a7S3) with NO at room temperature // Chem. Lett. 1997. P. 331−332.
19. McClean, R.E., Campbell, M.L., and Goodwin R.H. Depletion kinetics of Mo(a7S3, a5S2, a5DJ) by N2, SO2, CO2, N2O, and NO // J. Phys. Chem. 1996. V. 100. No. 18. P. 7502−7510.
20. Mitchell S.A. and Hackett P.A. Chemical reactivity of iron atoms near room temperature // J. Chem. Phys. 1990 V. 93. No. 11. 7822−7829.
21. Ritter D. and Weisshaar, J.C. Kinetics of neutral transition-metal atoms in the gas phase: Oxidation of Sc(a2D), Ti(a3F), and V(a4F) by NO, O2, and N2O // J. Phys. Chem. 1990. V. 94. 4907−4913.
22. Jeung G.H., Luc P., Vetter R., Kim K.H., Lee Y.S. Experimental and theoretical study on the reaction Sc + NO → ScO + N // Phys. Chem. Chem. Phys. 2002. V. 4. P. 596−600.
23. McClean, R.E. and Pasternack L. Kinetics of the reactions V(a4F3/2, a6D3/2) + OX (X = O, N, and CO) // J. Phys. Chem. 1992. V. 96. No. 24. P. 9828−9831.
24. Ritter D. and Weisshaar J.C. Kinetics of neutral transition-metal atoms in the gas phase: Oxidation of Ti(a3F) by NO, O2, and N2O // J. Phys. Chem. 1989 V. 93. No. 4. P. 1576−1581.
25. Clemmer D.E., Honma K., and Koyano, I. Kinetics of excited-state Ti(a5F) depletion by NO, O2, N2O, and N2 // J. Phys. Chem. 1993. V. 97 No.44. P. 11480−11488.
26. Campbell M.L. and Hooper K.L. Temperature-dependent study of the kinetics of Ta(a4F3/2) with O2, N2O, CO2 and NO // J. Chem. Soc. Faraday Trans. 1997. V. 93. No. 12. P. 2139−2146.
27. Tsang, W. and Herron, J.T. Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN, and N2O // J. Phys. Chem. Ref. Data. 1991.V. 20. P. 609−663.
28. Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М.: Наука, 1974. 588 с.
29. Futerko P. M. and Fontijn A. Activation barriers for series of exothermic homologous reactions. I. Metal atom reactions with N2O // J. Chem. Phys. 1991. V. 95. No. 11. 8065−8072.
30. Hedgecock I.M., Naulin C., and Costes M. Crossed molecular beam study of the Cr(a7S3) + O2(X3Σg−) → CrO(X5ΠΩ) + O(3PJ) reaction // Chem. Phys. 1996. V. 207. Nos. 2−3. P. 379−387.
31. Ebbinghaus B.B. Thermodynamics of gas phase chromium species: The chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes // Comb. Flame. 1993. V. 93. Nos. 1−2. P. 119−137.
32. Balducci G., Gigli G., and Guido M. Dissociation energies of the molecules CrPO2(g) and CrO(g) by high-temperature mass spectrometry // J. Chem. Soc., Faraday Trans. 2. 1981. V. 77. P. 1107−1114.
33. Choudary U. V., Gingerich K. A., and Kingcade J. E. Mass spectrometric determination of the thermodynamic stabilities of gaseous molybdenum oxides and sodium molybdates and predicted stabilities of gaseous group ia tungstates, molybdates, chromates and sulfates // J. Less•Common Metals. 1975. V. 42. No. 1. P. 111−126.
34. Pedley J. B. and Marshall E. M. Thermochemical data for gaseous monoxides // J. Phys. Chem. Ref. Data. 1983. V. 12. No. 4. P. 967−1029.
35. Loock H.P., Simard B., Wallin S., and Linton C. Ionization potentials and bond energies of TiO, ZrO, NbO and MoO // J. Chem. Phys. 1998. V. 109. No. 20. P. 8980−8992.
36. Sievers M. R., Chen Y.-M., and Armentrout P. B. Metal oxide and carbide thermochemistry of Y+, Zr+, Nb+, and Mo+ // J. Chem. Phys. 1996. V. 105. No. 15. P. 6322−6341.
37. Song P., Guan W., Yao C., Su Z.M. Wu Z.J., Feng J.D., Yan L.K. Electronic structures of 4d transition metal monoxides by density functional theory // Theor. Chem. Acc. 2007. V. 117. P. 407−415.
38. Campbell M. L. Kinetic study of the reactions of gas phase Pd(a1S0), Ag(5s2S1/2), Au(6s2S1/2), Cd(5s2 1S0), and Hg(6s2 1S0) atoms with nitrous oxide // J. Phys. Chem. A. 2003. V. 107. No. 17. P. 3048−3053.
39. Stirling A. Oxygen-transfer reactions between 3d transition metals and N2O and NO2 // J. Am. Chem. Soc. 2002. V. 124. No. 15. P. 4058−4067.
40. Delabie A., Vinckier C., Flock M., and Pierloot K. Evaluating the activation barriers for transition metal-N2O reactions // J. Phys. Chem. A. 2001. V. 105. No. 22. P. 5479−5485.
41. Campbell, M.L.; Kolsch, E.J.; Hooper, K.L. kinetic study of the reactions of gas-phase V(a4F3/2) Cr(a7S3), Co(a4F9/2), Ni(a3F4, a3D3) and Zn(4s2 1S0) atoms with nitrous oxide // J. Phys. Chem. A. 2000. V. 104. No. 47. P. 11147−11153.
42. Blue A.S. and Fontijn A. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms // J. Chem. Phys. 2001. V. 115. No. 11. P. 5179−5183.
43. Mebel A.M. and Hwang D-Y. Theoretical study on the reaction mechanism of nickel atoms with carbon dioxide // J. Phys. Chem. A. 2000. V. 104. No. 49. P. 11622−11627.
44. Hannachi Y. and Mascetti J. Metal insertion route of the Ni + CO2 → NiO + CO reaction // J. Phys. Chem. A. 2003. V. 107. No. 34. P. 6708−6713.
45. Pantazis D.A., Tsipis A.C. Tsipis C.A. Theoretical study on the mechanism of reaction of ground-state Fe atoms with carbon dioxide // Collect. Czech. Chem. Commun. 2004. V. 69. No. 1. P. 13−33.
46. Simpson C.J.S.M., Chandler T.R.D., Strawson A.C. Vibrational relaxation in CO2 and CO2-Ar mixture studied using a shock tube and laser-schlieren technique // J. Chem. Phys. 1969. V. 51. No. 5. P. 2214−2219.
47. Rohrig M., Petersen E.L., Davidson D.F., and Hanson R.K. The pressure dependence of the thermal decomposition of N2O // Int. J. Chem. Kinet. 1996. V. 28. No. 8. P. 599−608.
48. Fujii N., Sagawai S., Sato T., Nosaka Y., and Miyama H. Study of the thermal dissociation of N2O and CO2 using O(3P) atomic resonance absorption spectroscopy // J. Phys. Chem. 1989.V. 93. No. 14. P. 5474−5478.
49. Campbell M.L. and Metzger J.R. Kinetic study of the reaction of Fe(a5DJ) with N2O from 398 to 620 K // Chem. Phys. Lett. 1996. V. 253. Nos. 1−2. P. 158−164.
50. Plane J.M.C. and Rollason R.J. A kinetic study of the reactions of Fe(a5D) and Fe+(a6D) with N2O over the temperature range 294−850 K // J. Chem. Soc. Faraday Trans. 1996. V. 92 P. 4371−4376.
51. Giesen A., Herzler J., and Roth P. High temperature oxidation of iron atoms by CO2 // Phys. Chem. Chem. Phys. 2002. V. 4. P. 3665−3668.
52. Sunderlin L.S., Wang D., and Squires R.R. Metal carbonyl bond strengths in Fe(CO)n− Ni(CO)n− // J. Am. Chem. Soc., 1992. V. 114. No.8. P. 2788−2796.
53. Смирнов В.Н. Термическая диссоциация прочности связей карбонилов железа Fе(СО)n (n = 5–1) // Кинет. Катал. 1993. Т. 34. № 4. С. 591−598.
54. Shim I., Gingerich K. A. All electron ab initio investigations of the electronic states of the FeC molecule // Europ. Phys. J. D. 1999. V. 7. No. 2. P. 163−172.
55. Ахмадов У.С., Заслонко И.С., Смирнов В.Н. Исследование реакций атомов Cr и Mo в ударных волнах // Кинетика и катализ. 1988. Т. 29. № 5. С. 942−943.
56. Fontijn, A.; Blue, A.S.; Narayan, A.S.; Bajaj, P.N. Gas-phase oxidation kinetics of toxic metals at incinerator temperatures. The reactions of chromium atoms with HCl, N2O, Cl2, and O2 // Combust. Sci. Technol. 1994. V. 101. No. 1. P. 59−73.
57. Lian, L.; Mitchell, S.A.; Rayner, D.M. Flow tube kinetic study of Mo and Mo2 reactivity // J. Phys. Chem. 1994. V. 98. No. 47. P. 11637−11647.
58. Mascetti J., Galan F., and Pàpai I. Carbon dioxide interaction with metal atoms: matrix isolation spectroscopic study and DFT calculations // Coord. Chem. Rev. 1999. V. 190−192. P. 557−576.
59. Шабатина Т.И., Масцетти Д. Огдет Д.С., Сергеев Г.Б. Криохимические конкурентные реакции атомов, кластеров и наноразмерных частиц переходных металлов // Успехи химии. 2007. Т. 76. № 12. С. 1202−1217.
60. Troe J. Theory of thermal unimolecular reactions at low pressures II. Strong collision rate constants. Applications. J. Chem. Phys., 1977. V. 66. No. 11. P. 4758−4775.
61. Кондратьев В.Н., Никитин Е.Е., Резников А.И., Уманский С.Я. Термические бимолекулярные реакции в газах. М.: Наука, 1976. 192 с.
62. McClean, R.E., Depletion Kinetics of Chromium Atoms by Sulfur Dioxide // J. Phys. Chem. A. 2000 V. 104. No. 38. P. 8723−8729.
63. McClean R.E. and Norris L. A kinetic study of the reactions of vanadium, iron, and cobalt with sulfur dioxide // Phys. Chem. Chem. Phys. 2005. V. 7. P. 2489−2497.
64. Zhou Z., Gao H., Liu R., and Du B. Study on the structure and property for the NO2+NO2- electron transfer system // J. Molec. Structure (Theochem). 2001. V. 545. Nos. 1−3. P. 179−186.
65. McCarthy M.C., Allington J.W.R., and Sullivan K.O. A quadratic configuration interaction study of N2O and N2O− // Mol. Physics. 1999. V. 96. No. 12. P. 1735−1737.
66. Schröder D., Schalley C.A., Harvey J.N., and Schwarz H. On the formation of the carbon dioxide anion radical CO2− in the gas phase // Int. J. Mass Spectr. 1999. Vs. 185−187. P. 25−35.
67. Vinckier C. and Cappan K. Kinetic study in a microwave-induced plasma afterglow of the Fe (a5D4) reaction with NO2 from 303 to 814 K // Phys. Chem. Chem. Phys. 2003. V. 5. P. 5419−5423.
68. Plane J. M. C. and Rollason R. J. A study of the reactions of Fe and FeO with NO2 and the structure and bond energy of FeO2 // Phys. Chem. Chem. Phys. 1999. V. 1. P. 1843−1849.
69. Vinckier C., Verhaeghe T., and Vanhees I. Kinetic study in a microwave-induced plasma afterglow of the Cu(42S) atom reaction with N2O from 458 to 980 K and with NO2 from 303 to 762 K // J. Chem. Soc. Faraday Trans. 1994. V. 90. P. 2003−2007.
70. Campbell M.L. and McClean R.E. Kinetics of neutral transition-metal atoms in the gas phase: oxidation reactions of Ti(a3F) from 300 to 600 K // J. Phys. Chem. 1993. V. 97. P. 7942−7946.
71. McClean, R.E., Depletion Kinetics of Nickel Atoms by Sulfur Dioxide // J. Phys. Chem. A. 1999. V. 103. No. 1. P. 75−79.
72. Martinez A., Calaminici P., Koster A.M., and Mitchell S.A. Interaction of Cr and Cr+ with NO: A density functional study // Chem. Phys. Lett. 1999. V. 299. No. 6. P. 630−636.
73. Plach, H.J. and Troe, J. UV absorption study of the dissociation of SO2 and SO in shock waves // Int. J. Chem. Kinet. 1984. V. 16. No. 12. P. 1531−1542.
74. Zellner R., Bimolecular Reaction Rate Coefficients, in Combustion Chemistry / Ed. Gardiner W.C. NY: Springer 1984. P. 127−172.