Double-Pipe Heat Exchanger with Diffuser Channels with Gas and Liquid Coolants




Numerical simulation of heat transfer in double-pipe heat exchangers with diffuser channels with small opening angles with gas and liquid coolants has been performed. During the calculations, a three-parameter differential RANS turbulence model was used, supplemented by a transfer equation for a turbulent heat flow. It is shown that due to the intensification of heat transfer in heat exchangers with diffuser channels, the amount of heat transferred from the «hot» coolant to the «cold» ones increases compared to heat exchangers with channels of constant cross section.

«double-pipe» heat exchanger, diffuser channels, RANS-turbulence model, gas, liquid coolants.


Volume 25, issue 4, 2024 year


Теплообменник «труба в трубе» с диффузорными каналами с газовыми и жидкими теплоносителями

Выполнено численное моделирование теплообмена в теплообменниках «труба в трубе» с диффузорными каналами с малыми углами раскрытия с газовыми и жидкими теплоносителями. При проведении расчетов использована трехпараметрическая дифференциальная RANS-модель турбулентности, дополненная уравнением переноса для турбулентного потока тепла. Показано, что за счет интенсификации теплообмена в теплообменниках с диффузорными каналами количество переданного тепла от «горячего» теплоносителя к «холодному» возрастает по сравнению с теплообменниками с каналами постоянного сечения.

теплообменник «труба в трубе», диффузорные каналы, RANS-модель турбулентности, газовые, жидкие теплоносители.


Volume 25, issue 4, 2024 year



1. Egorov K.S., Stepanova L.V. Thermophysical properties of noble gas mixtures with low Prandtl numbers, Engineering Journal: Science and Innovation. 2019. no. 3 (87). p. 6.
2. Krasnoporov, V.Y. Enhancement of heat transfer in flow of a liquid due to ultrasonic vibrations / V.Y. Krasnoporov. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no 1, pp. 119–126.
3. Molchanov T.I., Franchsov M.S., Kotvitsky A.Ya. Passive method of generating self-sustaining acoustic vibrations in a channel in problems of heat transfer intensification, Heat and mass transfer and hydrodynamics in swirling currents, Materials of the VIII International Conference, Moscow, 2021, pp. 108–110.
4. Zamzari F., Mehrez Z., El Cafsi A., Belghith A., Le Quéré P. Numerical investigation of entropy generation and heat transfer of pulsating flow in a horizontal channel with an open cavity, J. Hydrodynam. Ser. B 29, 2017, pp. 632–646, https://doi.org/10.1016/S1001-6058(16)60776-X.
5. Sadek H., Robinson A., Cotton J., Ching C., Shoukri M. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer, Int. J. Heat Mass Transf. 49, 2006. pp. 1647–1657, https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.030.
6. Wu Z., Sundén B. Convective heat transfer performance of aggregate-laden nanofluids, Int. J. Heat Mass Transf. 93, 2016, pp 1107–1115, https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.032.
7. Singh V., Gupta M. Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: a review, Energy Convers, Manage, 123, 2016, pp. 290–307, https://doi.org/10.1016/j.enconman.2016.06.035.
8. Manca O., Nardini S., Ricci D. Numerical analysis of water forced convection in channels with differently shaped transverse ribs, J. Appl. Math, 2011, https://doi.org/10.1155/2011/323485.
9. Liu J., Xie G., Simon T.W. Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves, Int. J. Heat Mass Transf. 81, 2015, pp. 563–577, https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.021.
10. Lee K.-S., Kim W.-S., Si J.-M. Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger, Int. J. Heat Mass Transf., 44, 2001, pp. 3223–3231, https://doi.org/10.1016/S0017-9310(00)00350-1.
11. Ozceyhan V., Gunes S., Buyukalaca O., Altuntop N. Heat transfer enhancement in a tube using circular cross sectional rings separated from wall, Appl. Energy 85, 2008, pp. 988–1001, https://doi.org/10.1016/j.apenergy.2008.02.007.
12. Ibrahim E. Augmentation of laminar flow and heat transfer in flat tubes by means of helical screw-tape inserts, Energy Convers. Manage. 52, 2011, pp. 250–257, https://doi.org/10.1016/j.enconman.2010.06.065.
13. Akpinar E.K. Evaluation of heat transfer and exergy loss in a concentric double pipe ex-changer equipped with helical wires, Energy Convers. Manage. 47, 2006, pp. 3473–3486, https://doi.org/10.1016/j.enconman.2005.12.014.
14. Naphon. Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes, Int. Commun. Heat Mass Transfer 33, 2006, pp. 753–763, https://doi.org/10.1016/j.icheatmasstransfer.2006.01.020.
15. Choudhari S.S., Taji S. Experimental studies on effect of coil wire insert on heat transfer enhancement and friction factor of double pipe heat exchanger, Int. J. Comput. Eng. Res. 3, 2013, pp. 32–39.
16. Zohir A., Habib M., Nemitallah M. Heat transfer characteristics in a double pipe heat exchanger equipped with coiled circular wires, Exp. Heat Transfer 28, 2015, pp. 531–545, https://doi.org/10.1080/08916152.2014.915271.
17. Safikhani H., Eiamsa-ard Pareto S. based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes, Appl. Therm. Eng. 95, 2016. P. 275–280, https://doi.org/10.1016/j.applthermaleng.2015.11.033.
18. Zolotonosov A.Ya., Zolotonosov Ya.D. Improvement of heat exchangers of the «pipe in a pipe» type with a rotating heat exchange surface «confuser - diffuser», Heat supply, ventilation, air conditioning, gas supply and lighting: Collection of scientific. Izvestiya KazGASU, 2012, pp. 112–124.
19. Wei Wang, Yaning Zhang, Kwan-Soo Lee, Bingxi Li. Optimal Design of a Double Pipe Heat Exchanger Based on the Outward Helically Corrugated Tube, Int. J. Heat Mass Trans-fer. 2019, vol. 135, pp. 706–716.
20. Leont’ev A. I., Lushchik V. G., Reshmin A. I., Heat transfer in conical expanding channels, High Temp., 2016, vol. 54, pp. 270–276, DOI: 10.1134/S0018151X16020115
21. Lushchik V. G., Reshmin A. I. Heat transfer enhancement in a plane separation free diffuser, High Temp., 2018, vol. 56, pp. 569–575, DOI: 10.1134/S0018151X18040120
22. Lushchik V. G., Makarova M. S., Medvetskaya N. V., and Reshmin A. I. Numerical investigation of flow and heat transfer in plane channels of variable section, Thermal Processes in Engineering, 2019, vol. 11, no. 9, pp. 386–394. [in Russian].
23. Reshmin A. I., Teplovodskii S. K., Trifonov V. V, Turbulent flow in a circular separationless diffuser at Reynolds numbers smaller than 2000, Fluid Dyn.,2011, vol. 46, pp. 278–285, DOI: 10.1134/S0015462811020104
24. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E. Three parameter model of shear turbulence, Fluid Dyn., 1978, vol. 13, pp. 350–360, DOI: 10.1007/BF01050525
25. Lushchik V.G., Pavel’ev A.A., Yakubenko A.E. Turbulent flows. Models and numerical investigation. A review, Fluid Dynamics, 1994, vol. 29, no. 4, pp. 440–457.
26. Lushchik V. G., Pavel’ev A. A., and Yakubenko A. E. Transport Equations for Turbulence Characteristics: Models and Results of Calculations, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series, 1988, vol. 22, p. 3. [in Russian]
27. Lushchik V.G., Pavel’ev A. A., and Yakubenko A. E., Three-Parameter Model of Turbulence. Heat Transfer Calculations, Fluid Dynamics, 1986, vol. 21, no. 2, p. 200.
28. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E., Transfer equation for turbulent heat flux. Calculation of heat exchange in a pipe, Fluid Dyn., 1988, vol. 23, pp. 835–842. DOI: 10.1007/BF01051816
29. Lushchik V.G., Makarova M.S., Reshmin A.I. Double-Pipe Heat Exchanger with Diffuser Channels, High Temperature, 2022, vol. 60, suppl. 2, pp. s215-s222.
30. Reshmin A. I., Lushchik V. G., Makarova M. S., Intensification of Heat Transfer in Heat Exchangers with Diffuser Canals, Physical-Chemical Kinetics in Gas Dynamics, 2023, vol. 24, no. 2. [in Russian].
31. Lushchik V.G., Makarova M.S., Reshmin A.I. Plate Heat Exchanger with Diffuser Channels. High Temperature, 2020, vol.58, no. 3, pp. 352–359.