Heat transfer and behavior of silicon carbide samples in subsonic air, nitrogen and carbon dioxide plasma flows




Heat exchange of silicon carbide samples in subsonic air, nitrogen and carbon dioxide plasma jets of VGU-4 HF-plasmatron has been investigated. A significant influence of the chemical composition of the dissociated gas flow on the material behavior was revealed. The macro- and microstructure of the samples surface was analyzed, the phase composition before and after exposure was investigated. The emissivity of the samples surface was investigated. Numerical modeling of the experimental modes using author's codes based on Navier-Stokes equations was carried out. The values of the effective recombination coefficient of atoms and molecules γw on the material surface were obtained. Probe measurements of heat fluxes and dynamic pressures for the modes of the experiments were performed

silicon carbide, heat transfer, HF-plasmatron, dissociated gas, emissivity, catalytic properties, thermochemical resistance

Aleksey Vladimirovich Chaplygin, Semen Sergeevich Galkin, I. V. Lukomskii, Elena Sergeevna Tepteeva, Sergey Vasilevsky, Anatoly Kolesnikov, Elizaveta Petrovna Simonenko, Nikolay Simonenko

Volume 25, issue 2, 2024 year


Теплообмен и поведение образцов из карбида кремния в дозвуковых потоках плазмы воздуха, азота и углекислого газа

Исследован теплообмен образцов карбида кремния в дозвуковых струях плазмы воздуха, азота и углекислого газа ВЧ-плазмотрона ВГУ-4. Выявлено существенное влияние химического состава диссоциированного газового потока на поведение материала. Выполнен анализ макро- и микроструктуры поверхности образцов, исследован фазовый состав до и после воздействия. Исследована излучательная способность поверхности образцов. Проведено численное моделирование режимов экспериментов с использованием авторских кодов, основанных на уравнениях Навье-Стокса. Получены значения эффективного коэффициента рекомбинации атомов и молекул γw на поверхности материала. Выполнены зондовые измерения тепловых потоков и скоростных напоров для режимов проведенных экспериментов

карбид кремния, теплообмен, ВЧ-плазмотрон, диссоциированный газ, излучательная способность, каталитические свойства, термохимическая стойкость

Aleksey Vladimirovich Chaplygin, Semen Sergeevich Galkin, I. V. Lukomskii, Elena Sergeevna Tepteeva, Sergey Vasilevsky, Anatoly Kolesnikov, Elizaveta Petrovna Simonenko, Nikolay Simonenko

Volume 25, issue 2, 2024 year



1. Wang, X., Gao, X., Zhang, Z., Cheng, L., Ma, H., Yang W. “Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review,” J. Eur. Ceram. Soc. 2021. Vol. 41, № 9. pp. 4671–4688.
DOI: 10.1016/j.jeurceramsoc.2021.03.051
2. DiCarlo, J.A. “Advances in SiC/SiC Composites for Aero‐Propulsion,” Ceramic Matrix Composites. 1st ed. / ed. Bansal N.P., Lamon J. Wiley, 2014. pp. 217–235.
DOI: 10.1002/9781118832998.ch7
3. Naslain, R., Christin, F. “SiC-Matrix Composite Materials for Advanced Jet Engines,” MRS Bull. 2003. Vol. 28, № 9. pp. 654–658.
DOI: 10.1557/mrs2003.193
4. Krenkel, W. “Carbon Fibre Reinforced Silicon Carbide Composites (C/SiC, C/C-SiC),” Handbook of Ceramic Composites / ed. Bansal N.P. Boston, MA: Springer US, 2005. pp. 117–148.
DOI: 10.1007/0-387-23986-3_6
5. Simonenko, E.P., Kolesnikov, A.F., Chaplygin, A.V., Kotov, M.A., Yakimov, M.Y., Lukomskii, I.V., Galkin, S.S., Shemyakin, A.N., Solovyov, N.G., Lysenkov, A.S., Nagornov, I.A. “Oxidation of Ceramic Materials Based on HfB2-SiC under the Influence of Supersonic CO2 Jets and Additional Laser Heating,” Int. J. Mol. Sci. 2023. Vol. 24, № 17. p. 13634.
DOI: 10.3390/ijms241713634
6. Squire, T.H., Marschall, J. “Material property requirements for analysis and design of UHTC components in hypersonic applications,” J. Eur. Ceram. Soc. 2010. Vol. 30, № 11. pp. 2239–2251.
DOI: 10.1016/j.jeurceramsoc.2010.01.026
7. Nisar, A., Hassan, R., Agarwal, A., Balani, K. “Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems,” Ceram. Int. 2022. Vol. 48, № 7. pp. 8852–8881.
DOI: 10.1016/j.ceramint.2021.12.199
8. Pellegrini, C., Balat-Pichelin, M., Rapaud, O., Bêche, E., Thébault, Y. “Oxidation resistance up to 2600 K under air plasma of (Zr/Hf)B2 composites containing 20 vol% AlN for hypersonic applications,” Ceram. Int. 2023. Vol. 49, № 19. pp. 31634–31648.
DOI: 10.1016/j.ceramint.2023.07.117
9. Simonenko, E.P., Simonenko, N.P., Gordeev, A.N., Kolesnikov, A.F., Chaplygin, A.V., Lysenkov, A.S., Nagornov, I.A., Sevastyanov, V.G., Kuznetsov, N.T. “Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air,” J. Eur. Ceram. Soc. 2021. Vol. 41, № 2. pp. 1088–1098.
DOI: 10.1016/j.jeurceramsoc.2020.10.001
10. Simonenko, E.P., Simonenko, N.P., Kolesnikov, A.F., Chaplygin, A.V., Sakharov, V.I., Lysenkov, A.S., Nagornov, I.A., Kuznetsov, N.T. “Effect of 2 vol % Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air,” Russ. J. Inorg. Chem. 2022. Vol. 67, № 12. pp. 2050–2061.
DOI: 10.1134/S0036023622601866
11. Berton, B., Bacos, M.P., Demange, D., Lahaye, J. “High-temperature oxidation of silicon carbide in simulated atmospheric re-entry conditions,” J. Mater. Sci. 1992. Vol. 27, № 12. pp. 3206–3210.
DOI: 10.1007/BF01116013
12. Balat, M.J.H. “Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air,” J. Eur. Ceram. Soc. 1996. Vol. 16, № 1. pp. 55–62.
DOI: 10.1016/0955-2219(95)00104-2
13. Balat, M.J.H., Czerniak, M., Badie, J.M. “Ceramics Catalysis Evaluation at High Temperature Using Thermal and Chemical Approaches,” J. Spacecr. Rockets. 1999. Vol. 36, № 2. pp. 273–279.
DOI: 10.2514/2.3442
14. Cauquot, P., Cavadias, S., Amouroux, J. “Heat transfer from oxygen atoms recombination on silicon carbide: chemical evolution of the material surface,” High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2000. Vol. 4, № 3. p. 14.
DOI: 10.1615/HighTempMatProc.v4.i3.50
15. Alfano, D., Scatteia, L., Cantoni, S., Balat-Pichelin, M. “Emissivity and catalycity measurements on SiC-coated carbon fibre reinforced silicon carbide composite,” J. Eur. Ceram. Soc. 2009. Vol. 29, № 10. pp. 2045–2051.
DOI: 10.1016/j.jeurceramsoc.2008.12.011
16. Panerai, F., Olivier, C., Tagliaferri, E., Rossi, G. “Testing of the EXPERT Thermal Protection System Junction in a Plasma Wind Tunnel,” // 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany: American Institute of Aeronautics and Astronautics, 2009.
DOI: 10.2514/6.2009-7243
17. Chazot, O., Panerai, F., Muylaert, J.M., Thoemel, J. “Catalysis Phenomena Determination in Plasmatron Facility for Flight Experiment Design,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: American Institute of Aeronautics and Astronautics, 2010.
DOI: 10.2514/6.2010-1248
18. Panerai, F., Chazot, O., Helber, B. “Gas/Surface Interaction Study on Ceramic Matrix Composite Thermal Protection System in the VKI Plasmatron Facility,” 42nd AIAA Thermophysics Conference. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics, 2011.
DOI: 10.2514/6.2011-3642
19. Sakraker, I., Asma, C.O. “Experimental investigation of passive/active oxidation behavior of SiC based ceramic thermal protection materials exposed to high enthalpy plasma,” J. Eur. Ceram. Soc. 2013. Vol. 33, № 2. pp. 351–359.
DOI: 10.1016/j.jeurceramsoc.2012.09.002
20. Panerai, F., Helber, B., Chazot, O., Balat-Pichelin, M. “Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions,” Carbon. 2014. Vol. 71. pp. 102–119.
DOI: 10.1016/j.carbon.2014.01.018
21. Balat-Pichelin, M., Charpentier, L., Panerai, F., Chazot, O., Helber, B., Nickel, K. “Oxidation at high temperature in air plasma for the TPS of IXV - Passive/active transition and temperature jump,” 8th European Symposium on Aerothermodynamics for Space Vehicles. Lisbonne, Portugal, 2015.
22. Vennemann, D., Yakushin, M. “Oxidation tests on SiC reference material in an induction heated facility under sub- and supersonic flow conditions,” Space Plane and Hypersonic Systems and Technology Conference. Norfolk, VA, USA: American Institute of Aeronautics and Astronautics, 1996.
DOI: 10.2514/6.1996-4566
23. Yakushin, M., Gordeev, A., Vennemann, D., Novelli, A. “Mass loss of SiC sample surfaces under different flow conditions,” 20th AIAA Advanced Measurement and Ground Testing Technology Conference. Albuquerque, NM, USA: American Institute of Aeronautics and Astronautics, 1998.
DOI: 10.2514/6.1998-2605
24. Kolesnikov, A.F., Gordeev A.N., Vasil'evskii S.A. Ispytaniya materialov v plazmotrone VGU-4 i opredelenie ih kataliticheskoj aktivnosti dlya uslovij, modeliruyushchih teploperedachu k eksperimental'nomu apparatu “Expert” (Testing of materials in plasmatron VGU-4 and determination of their catalytic activity for environments simulating heat transfer to the “Expert” experimental vehicle). Preprint №969. IPMech RAS. 2011. [in Russian].
25. Kolesnikov, A.F., Gordeev, A.N., Vasilevskii, S.A. “Capabilities of RF-plasmatron IPG-4 for re-entry simulation,” J. Tech. Phys. 2009. Vol. Vol. 50, no 3. pp. 181–198.
26. Stoeckle, T., Auweter-Kurtz, M., Laure, S. “Material catalysis in high enthalpy air flows,” 31st Thermophysics Conference. New Orlean, LA, USA: American Institute of Aeronautics and Astronautics, 1996.
DOI: 10.2514/6.1996-1904
27. Feigl, M., Auweter-Kurtz, M. “Investigation of SiO production in front of Si-based material surfaces to determine the transition from passive to active oxidation using planar laser-induced fluorescence,” 35th AIAA Thermophysics Conference. Anaheim, CA, USA: American Institute of Aeronautics and Astronautics, 2001.
DOI: 10.2514/6.2001-3022
28. Fertig, M., Frühauf, H., Auweter-Kurtz, M. “Modelling of Reactive Processes at SiC Surfaces in Rarefied Nonequilibrium Airflows,” 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, Missouri: American Institute of Aeronautics and Astronautics, 2002.
DOI: 10.2514/6.2002-3102
29. Hald, H. “Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials,” Aerosp. Sci. Technol. 2003. Vol. 7, № 7. pp. 551–559.
DOI: 10.1016/S1270-9638(03)00054-3
30. Hald, H., Ullmann, T. “Reentry Flight and Ground Testing Experience with Hot Structures of C/C-SiC Material,” 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: American Institute of Aeronautics and Astronautics, 2003.
DOI: 10.2514/6.2003-1667
31. Herdrich, G., Auweter-Kurtz, M., Fertig, M., Löhle, S., Pidan, S., Laux, T. “Catalytic and Oxidative Behaviour of Silicon Carbide based Materials for Thermal Protection Materials,” 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Vancouver, British Columbia, Canada: American Institute of Aeronautics and Astronautics, 2004. pp. I-3.
DOI: 10.2514/6.IAC-04-I.3.A.09
32. Herdrich, G., Auweter-Kurtz, M., Löhle, S., Pidan, S., Fertig, M., Laux, T. “Oxidation Behavior of SiC-based Thermal Protection System Materials Using Newly Developed Probe Techniques,” 37th AIAA Thermophysics Conference. Portland, Oregon: American Institute of Aeronautics and Astronautics, 2004. p. 2173.
DOI: 10.2514/6.2004-2173
33. Pidan, S., Auweter-Kurtz, M., Fertig, M., Herdrich, G., Laux, T., Trabandt, U. “Catalytic Behaviour of Candidate Thermal Protection Materials,” 2005. Vol. 563. p. 95.
34. Herdrich, G., Fertig, M., Löhle, S., Pidan, S., Auweter-Kurtz, M., Laux, T. “Oxidation Behavior of Siliconcarbide-Based Materials by Using New Probe Techniques,” J. Spacecr. Rockets. 2005. Vol. 42, № 5. pp. 817–824.
DOI: 10.2514/1.12265
35. Löhle, S., Fertig, M., Auweter-Kurtz, M. “Quantitative Comparison of Measured and Numerically Simulated Erosion Rates of SiC Based Heat Shield Materials,” New Results in Numerical and Experimental Fluid Mechanics V / ed. Rath H.-J. et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. Vol. 92. pp. 313–321.
DOI: 10.1007/978-3-540-33287-9_39
36. Pagan, A.S., Massuti-Ballester, B., Herdrich, G.H. “Experimental Thermal Response and Demisability Investigations on five Aerospace Structure Materials under Simulated Destructive Re-Entry Conditions,” 46th AIAA Thermophysics Conference. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2016.
DOI: 10.2514/6.2016-4154
37. Massuti-Ballester, B., Herdrich, G. “Experimental Methodology to Assess Atomic Recombination on High-Temperature Materials,” J. Thermophys. Heat Transf. 2018. Vol. 32, № 2. pp. 353–368.
DOI: 10.2514/1.T5132
38. Pidan, S., Auweter-Kurtz, M., Herdrich, G., Fertig, M. “Determination of Recombination Coefficients and Spectral Emissivity of Thermal Protection Materials,” 37th AIAA Thermophysics Conference. Portland, Oregon: American Institute of Aeronautics and Astronautics, 2004. p. 2274.
DOI: 10.2514/6.2004-2274
39. Pidan, S., Auweter-Kurtz, M., Herdrich, G., Fertig, M. “Recombination Coefficients and Spectral Emissivity of Silicon Carbide-Based Thermal Protection Materials,” J. Thermophys. Heat Transf. 2005. Vol. 19, № 4. pp. 566–571.
DOI: 10.2514/1.12814
40. Pagan, A., Massuti-Ballester, B., Herdrich, G. “Total and Spectral Emissivities of Demising Aerospace Materials,” Front. Appl. Plasma Technol. 2016. Vol. 9. p. 7.
41. Morino, Y., Yoshinaka, T., Auweter-Kurtz, M., Hilfer, G., Speckmann, H.D., Sakai, A. “Erosion Characteristics Of SiC Coated C/C Materials In Arc-Heated High Enthalpy Air Flow,” Acta Astronaut. 2002. Vol. 50, № 3. pp. 149–158.
DOI: 10.1016/S0094-5765(01)00150-3
42. Gülhan, A., Esser, B., Koch, R., Henckels, A., Gruhn, P. “Aerothermal Qualification of High Temperature Materials and Structures in Ground Facilities,” 2006. Vol. 631. p. 51.
43. Trabandt, U., Fischer, W., Guelhan, A., Esser, B., Koch, D., Knoche, R. “Improvement of Lifetime Performance of Removable TPS and Hot Structures,” 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. San Francisco, California: American Institute of Aeronautics and Astronautics, 2006.
DOI: 10.2514/6.2006-2949
44. Ullmann, T., Reimer, T., Hald, H., Zeiffer, B., Schneider, H. “Reentry Flight Testing of a C/C-SiC Structure with Yttrium Silicate Oxidation Protection,” 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia: American Institute of Aeronautics and Astronautics, 2006.
DOI: 10.2514/6.2006-8127
45. Owens, W. “Aero-thermal characterization of silicon carbide flexible TPS using a 30kW ICP torch,” The University of Vermont, 2015. 312 p.
46. Ito, T., Kurotaki, T., Matsuzaki, T., Ishida, K., Watanabe, Y. “Evaluation of Surface Catalytic Effect on TPS in Arc-Heated Wind Tunnel,” 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, Missouri: American Institute of Aeronautics and Astronautics, 2002.
DOI: 10.2514/6.2002-3335
47. Kurotaki, T., Ito, T., Matsuzaki, T., Ishida, K., Watanabe, Y. “CFD Evaluation of Catalytic Model on SiO2-Based TPS in Arc-Heated Wind Tunnel,” 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2003.
DOI: 10.2514/6.2003-155
48. Ogasawara, T., Ishikawa, T. “Oxidation Behavior of Silicon‐Infiltrated Carbon/Carbon Composites in High‐Enthalpy Convective Environment,” J. Am. Ceram. Soc. 2001. Vol. 84, № 7. pp. 1559–1564. DOI: 10.1111/j.1151-2916.2001.tb00877.x
49. Oguri, K., Sekigawa, T., Kochiyama, J., Miho, K. “Catalycity Measurement of Oxidation-resistant CVD-SiC Coating on C/C Composite for Space Vehicle,” Mater. Trans. 2001. Vol. 42, № 5. pp. 856–861.
DOI: 10.2320/matertrans.42.856
50. Sekigawa, T., Oguri, K., Kochiyama, J., Miho, K. “Endurance Test of Oxidation-resistant CVD-SiC Coating on C/C Composites for Space Vehicle,” Mater. Trans. 2001. Vol. 42, № 5. Pp. 825–828.
DOI: 10.2320/matertrans.42.825
51. Ozawa, M., Funatsu, M., Onozawa, R., Shibata, R., Shirai, H., Takakusagi, F. “Spectroscopic Measurements of SiC Ablations in Air Plasma Freejets,” Trans. Jpn. Soc. Aeronaut. SPACE Sci. Aerosp. Technol. Jpn. 2012. Vol. 10, № 28. pp. 41-47.
DOI: 10.2322/tastj.10.Pe_41
52. Funatsu, M., Shirai, H. “Reduction of radiative heating due to a SiC ablation layer,” Shock Waves / ed. Jiang Z. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. pp. 221–226.
DOI: 10.1007/978-3-540-27009-6_31
53. Funatsu, M., Shirai, H. “Experimental study of SiC-based ablation products in high-temperature plasma-jets,” Shock Waves / ed. Hannemann K., Seiler F. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. pp. 445–450.
DOI: 10.1007/978-3-540-85168-4_71
54. Funatsu, M., Konishi, K., Kawada, M., Ozawa, M., Takakusagi, F. “Visualizations of SiC Ablations in Air Plasma Freejets,” Trans. Jpn. Soc. Aeronaut. SPACE Sci. Aerosp. Technol. Jpn. 2014. Vol. 12, № 29. pp. 45-50.
DOI: 10.2322/tastj.12.Po_2_45
55. Suzuki, S., Mizuno, M., Takayanagi, H., Fujita, K., Matsui, M., Yamagiwa, Y. “Experimental Study for Atomic Oxygen Catalytic Efficiency on TPS Surfaces using Microwave Discharged Plasma,” 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine (Dallas/Ft. Worth Region), Texas: American Institute of Aeronautics and Astronautics, 2013. p. 742.
DOI: 10.2514/6.2013-742
56. Yin, J., Zhang, H., Xiong, X., Zuo, J., Tao, H. “Ablation properties of C/C–SiC composites tested on an arc heater,” Solid State Sci. 2011. Vol. 13, № 11. pp. 2055–2059.
DOI: 10.1016/j.solidstatesciences.2011.09.010
57. Wang, Y., Chen, Z., Yu, S. “Ablation behavior and mechanism analysis of C/SiC composites,” J. Mater. Res. Technol. 2016. Vol. 5, № 2. pp. 170–182.
DOI: 10.1016/j.jmrt.2015.10.004
58. Luo, L., Wang, Y., Liu, L., Duan, L., Wang, G., Lu, Y. “Ablation behavior of C/SiC composites in plasma wind tunnel,” Carbon. 2016. Vol. 103. pp. 73–83.
DOI: 10.1016/j.carbon.2016.02.085
59. Yang, L., Xiao, X., Jing, L., Zhang, J., Liu, L., Zhao, C., Wang, G. “Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas,” J. Eur. Ceram. Soc. 2021. Vol. 41, № 10. pp. 5388–5393.
DOI: 10.1016/j.jeurceramsoc.2021.03.064
60. Zhao, X., Cao, Y., Duan, L., Li, Z., Wang, Y. “Low-surface-temperature jump behavior of C/SiC composites prepared via precursor impregnation and pyrolysis in high-enthalpy plasma flows,” J. Eur. Ceram. Soc. 2021. Vol. 41, № 15. pp. 7601–7609.
DOI: 10.1016/j.jeurceramsoc.2021.08.061
61. Chen, S., Zeng, Y., Xiong, X., Lun, H., Ye, Z., Jiang, T., Yang, L., Zhang, J., Liu, L., Wang, G., Jing, L. “Static and dynamic oxidation behaviour of silicon carbide at high temperature,” J. Eur. Ceram. Soc. 2021. Vol. 41, № 11. pp. 5445–5456.
DOI: 10.1016/j.jeurceramsoc.2021.04.040
62. Fang, S., Lin, X., Zeng, H., Zhu, X., Zhou, F., Yang, J., Li, F., Ou, D., Yu, X. “Gas–surface interactions in a large-scale inductively coupled plasma wind tunnel investigated by emission/absorption spectroscopy,” Phys. Fluids. 2022. Vol. 34, № 8. p. 082113.
DOI: 10.1063/5.0102274
63. Yang, L., Jing, L., Zhang, J., Liu, L., Zhao, C., Ma, H., Wang, G. “New insights on the ablation mechanism of silicon carbide in dissociated air plasmas,” Aerosp. Sci. Technol. 2022. Vol. 129. p. 107863.
DOI: 10.1016/j.ast.2022.107863
64. Herdrich, G., Auweter-Kurtz, M., Endlich, P., Laux, T. “Simulation of Planetary Entry Manouevres Using the Inductively Heated Plasma Wind Tunnel PWK3,” 36th AIAA Thermophysics Conference. Orlando, Florida: American Institute of Aeronautics and Astronautics, 2003. p. 3637.
DOI: 10.2514/6.2003-3637
65. Owens, W., Merkel, D., Sansoz, F., Fletcher, D. “Fracture Behavior of Woven Silicon Carbide Fibers Exposed to High‐Temperature Nitrogen and Oxygen Plasmas,” J. Am. Ceram. Soc. / ed. Jacobson N. 2015. Vol. 98, № 12. pp. 4003–4009.
DOI: 10.1111/jace.13826
66. Massuti-Ballester, B., Pidan, S., Herdrich, G., Fertig, M. “Recent catalysis measurements at IRS,” Adv. Space Res. 2015. Vol. 56, № 4. pp. 742–765.
DOI: 10.1016/j.asr.2015.04.028
67. Massuti-Ballester, B., Herdrich, G., Frieß, M. “Oxidation of PM1000 and C/C-SiC exposed to Highly Dissociated Oxygen and Nitrogen Flows,” J. Eur. Ceram. Soc. 2020. Vol. 40, № 6. Pp. 2306–2316. DOI: 10.1016/j.jeurceramsoc.2020.01.053
68. Kaiser, C.F., Burghaus, H., Pagan, A.S., Herdrich, G. “In-situ spectral emissivity assessment of sintered silicon carbide (SSiC) in high-enthalpy flows for catalysis investigations,” 2022.
69. Koch, U., Esser, B., Gülhan, A. “Qualification of TPS components in Martian and Earth atmospheres,” Radiation of High Temperature Gases in Atmospheric Entry. 2003. Vol. 533. pp. 39–46.
70. Balat-Pichelin, M. “Oxidation and catalycity of thermal protection materials at high temperature,” High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2004. Vol. 8, № 1. pp. 161–171.
DOI: 10.1615/HighTempMatProc.v8.i1.100
71. Sakharov V.I., Kolesnikov A.F., Gordeev A.N., Vérant J.L. “The methology for determination of catalytic properties of SiC samples for specified Pre-X and MSRO conditions,” Progress in Flight Physics. Versailles, France: EDP Sciences, 2012. pp. 365–380.
DOI: 10.1051/eucass/201203365
72. Danehy, P., Hires, D., Johansen, C., Bathel, B., Jones, S., Gragg, J., Splinter, S. “Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet,” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee: American Institute of Aeronautics and Astronautics, 2012.
DOI: 10.2514/6.2012-856
73. Mozetič, M., Balat-Pichelin, M. “Oxidation of SiC in low-pressure CO2 plasma: Formation of silica nano-needles,” Vacuum. 2014. Vol. 100. pp. 50–52.
DOI: 10.1016/j.vacuum.2013.07.023
74. Brémare, N., Jouen, S., Boubert, P. “Non-equilibrium radiation during SiC–CO2 plasma interaction,” J. Phys. Appl. Phys. 2016. Vol. 49, № 16. p. 165201.
DOI: 10.1088/0022-3727/49/16/165201
75. Gordeev, A. “Overview of characteristics and experiments in IPM plasmatrons,” VKI Spec. Course Meas. Tech. High Enthalpy Plasma Flows. Rhode-Saint-Genese, 1999.
76. Sanson, F., Villedieu, N., Panerai, F., Chazot, O., Congedo, P.M., Magin, T.E. “Quantification of uncertainty on the catalytic property of reusable thermal protection materials from high enthalpy experiments,” Exp. Therm. Fluid Sci. 2017. Vol. 82. pp. 414–423.
DOI: 10.1016/j.expthermflusci.2016.11.013
77. Patankar, S.V., Spalding, D.B. “A Calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Elsevier, 1983. pp. 54–73.
78. Patankar, S.V. “Numerical heat transfer and fluid flow,” Washington. 1980. 214 p.
79. Chaplygin A.V., Vasil’evskii S.A., Galkin S.S., Kolesnikov A.F. “Thermal state of uncooled quartz discharge channel of powerful high-frequency induction plasmatron,” Phys.-Chem. Kinet. Gas Dyn. 2022. Vol. 23, № 2. Pp. 38–56.
DOI: 10.33257/PhChGD.23.2.990
80. Vasil’evskii, S.A.., Kolesnikov, A.F. Chislennoe issledovanie techenij i teploobmena v indukcionnoj plazme vysokochastotnogo plazmotrona (Numerical study of flows and heat transfer in the induction plasma of a high-frequency plasmatron), Enciklopediya Nizkotemperaturnoj Plazmy, Series B, part 2. 2008. pp. 220–234. [in Russian]
81. Kolesnikov, A.F., Pershin, I.S., Vasil’evskii, S.A., Yakushin, M.I. “Study of Quartz Surface Catalycity in Dissociated Carbon Dioxide Subsonic Flows,” J. Spacecr. Rockets. 2000. Vol. 37, № 5. pp. 573–579. DOI: 10.2514/2.3629
82. Vasil’evskii, S.A., Gordeev, A.N., Kolesnikov, A.F., Chaplygin A.V. “Thermal Effect of Surface Catalysis in Subsonic Dissociated-Air Jets. Experiment on a High-Frequency Plasmatron and Numerical Modeling,” Fluid Dyn. 2020. № 55. pp. 708–720.
DOI: 10.1134/S0015462820050134