On uncertainty of modeling the interaction of a meteoroid with the atmosphere at various entry angles




The interaction with the atmosphere of the meteor body or its fragments (after destruction) is modeled by numerically solving the meteor physics equations, taking into account the curvilinearity of the trajectory. The uncertainty of such modeling is due to the uncertainty in setting the main governing parameters of the equations: the heat transfer coefficient and effective heat of ablation. We study how the angle of meteoroid entry into the atmosphere influences on the scatter in the results of calculations of its velocity, mass loss, energy deposition, trajectory and meteorite fall location, caused by different ways of setting the heat transfer coefficient and ablation heat.

meteoroid, interaction with the atmosphere, heat transfer coefficient, ablation heat


Volume 25, issue 1, 2024 year


О неопределенности моделирования взаимодействия метеорного тела с атмосферой при разных углах входа

Взаимодействие с атмосферой метеорного тела или его фрагментов (после разрушения), моделируется путем численного решения уравнений метеорной физики с учетом криволинейности траектории. Неопределенность такого моделирования связана с неопределенностью задания основных определяющих параметров этих уравнений – коэффициента теплопередачи и эффективной теплоты абляции. Исследуется, как влияет угол входа метеорного тела в атмосферу на разброс результатов расчетов его скорости, потери массы, энерговыделения, траектории и мест падения метеоритов, связанный с разными способами задания коэффициента теплопередачи и теплоты абляции.

метеороид, взаимодействие с атмосферой, коэффициент теплопередачи, теплота абляции.


Volume 25, issue 1, 2024 year



1. Bronshten, V. A., Fizika meteornyh yavlenij, M.: Nauka, 1981, 416 p.
2. Surzhikov, S. T., Shuvalov, M. P., “Cheking computational data on radiative and convectional heating of next generation spacecraft”, High Temperature, Vol. 51, 2013, pp. 408–420. https://doi.org/10.1134/S0018151X13030061
3. Surzhikov, S. T., Shuvalov M. P., “Estimation of radiation-convection heating of four types of reentry spacecrafts”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 15, No. 4, 2014. http://chemphys.edu.ru/issues/2014-15-4/articles/237/
4. Brykina, I. G., Egorova L. A., “Approximation formulas for the radiative heat flux at high velocities”, Fluid Dyn., Vol. 54, 2019, pp. 562–574. https://doi.org/10.1134/S0015462819040037
5. Brykina, I. G., Egorova, L. A., “On the ablation parameter in the problem of meteor body entering the atmosphere”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 22, No. 5, 2021. http://chemphys.edu.ru/issues/2021-22-5/articles/959/
6. Brykina I. G., Egorova L. A. “On the influence of the effective heat of ablation on modeling the interaction of meteoroids with the atmosphere”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 23, No. 2, 2022. http://chemphys.edu.ru/issues/2022-23-2/articles/995/
7. Adams, M, C., “Recent advances in ablation”, American Rocket Society J., Vol. 29, No 9, 1959, pp. 625–632.
8. Brykina, I. G., Egorova, L. A., “On the uncertainty of modeling the interaction of a meteoroid with the atmosphere at various entry velocities”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 24, No. 1, 2023. http://chemphys.edu.ru/issues/2023-24-1/articles/1034/
9. Borovička, J., Spurný, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., Shrbený, L., “The trajectory, structure and origin of the Chelyabinsk asteroidal impactor”, Nature, Vol. 503, 2013, pp. 235–237. https://doi.org/10.1038/nature12671
10. Brykina, I. G., Egorova, L. A., “Modeling motion, ablation and energy deposition of meteoroid in the atmosphere taking account of the curved trajectory”, Physical-Chemical Kinetics in Gas Dynamics, Vol. 21, No. 2, 2020. http://chemphys.edu.ru/issues/2020-21-2/articles/903/
11. Stulov, V. P., Mirskij, V. N., Vislyj, A. I., Aerodinamika bolidov, M.: Nauka, 1995, 236 p.
12. Brykina, I. G., Bragin, M. D., “On models of meteoroid disruption into the cloud of fragments”, Planetary & Space Sci., Vol. 187, 2020, No. 104942. https://doi.org/10.1016/j.pss.2020.104942