Использование электромагнитных актюаторов в аэродинамике



Use of electromagnetic actuators in aerodynamics

Methods for high-speed flow control near aircraft surface are considered. A classification of existing technologies is given, their advantages and disadvantages are shown. Theoretical foundations and operating principles of electromagnetic drives are considered, as well as a review of scientific and technical literature on their application in aerodynamics and prospects for technology development is given.

High speed flow control, electromagnetic actuator, glow discharge, magnetoplasma aerodynamics


Том 24, выпуск 6, 2023 год



Рассмотрены способы управления высокоскоростным потоком вблизи поверхности летательного аппарата. Приведена классификация существующих технологий, а также представлены их достоинства и недостатки. Рассмотрены теоретические основы
и принцип действия электромагнитных актюаторов, а также выполнен обзор научно-технической литературы об их применении в аэродинамике и перспективах развития технологии.

управление высокоскоростным потоком, электромагнитный актюатор, тлеющий разряд, магнитоплазменная аэродинамика


Том 24, выпуск 6, 2023 год



1. Tollmien W., Gortler H. Grenzschichtforschung, ihre Entwicklung und Problematik. 50 Jahre Grenzschichtforschung, Braunschweig, 1955. pp. 1–12.
2. Bussmann K., Muenz H. Die stabilitaet der laminaren reibungsschicht mit absaugung. Jb. dt. Luftfahrtforschung, 1942, pp. 36–39.
3. Baumann A. Tragflugel fur Flugzeugemit Luftraustrittsoffnungen in der Ausenhaut. Deutsches Reichs Patent 400806, 1921.
4. Wood R.M. A discussion of aerodynamic control effectors (ACEs) for unmanned aerial vehicles (UAVs) // 1st AIAA Technical Conference and Workshop on Unmanned Aerospace Vehicles, AIAA Paper 2002‐3494, 2002.
5. Louis N., Cattafesta III, Sheplak M. Actuators for Active Flow Control // Annu. Rev. Fluid Mech, 2011, Vol. 43, pp.247–272.
6. Lin W., ZhenBing L., ZhiXun X., Bing L., Xiong D. Review of actuators for high speed active flow control // Sci China Tech Sci, August 2012, Vol. 55, No. 8, pp. 2225–2240. DOI: 10.1007/s11431-012-4861-2.
7. Marqués P., Da Ronch A. Advanced UAV Aerodynamics, Flight Stability and Control // John Wiley & Sons Ltd, 2017. doi:10.1002/9781118928691
8. Surzhikov S.T. Surface electromagnetic actuator in rarefied hypersonic flow // IOP Conf. Ser.: J. Physics: Conf.Series, 2017. DOI: 10.1088/1742-6596/815/1/012005.
9. Суржиков С.Т. Гиперзвуковое обтекание острой пластины и двойного клина с электромагнитным актюатором // Изв. РАН, МЖГ. 2020. № 6. С. 106-120.
10. Chang P.K. Separation of Flow // Pergamon Press, 1970.
11. Walsh M.J., Anders J.B. Jr. Riblet/LEBU research at NASA Langley, 1989, Vol. 46, No. 3, pp. 255-262.
12. van Dam C.P., Yen D.T., Vijgen, P.M.H.W. Gurney flap experiments on airfoil and wings // J. Aircraft, 1999, Vol. 36 No. 2, pp. 484-486.
13. Lin J. Review of research on low-profile vortex generators to control boundary layer separation // Prog Aerospace Sci, 2002, Vol. 38, pp. 389–420.
14. Dolling D. Fifty years of shock-wave boundary-layer interaction research: what next? // AIAA J., 2001, Vol. 30, pp. 1517–1531.
15. Couldrick J.S., Gai S., Milthorpe J., et al. Swept shock wave boundary layer interaction control with “smart” flap actuator // Australian International Aerospace Conference, Canberra, Australia, 2001.
16. Couldrick J., Gai S., Milthorpe J., et al. Active control of swept shock wave/turbulent boundary-layer interactions // Aeronaut J., 2004, Vol. 108, pp. 93–101.
17. Couldrick J., Gai S., Milthorpe J., et al. Normal shock wave/turbulent boundary-layer interaction control using “smart” piezoelectric actuators // Aeronaut J., 2005, Vol. 109, pp. 577–583.
18. Jun H.Y., Rediniotis O.K., Lagoudas D.C. Development of a fuelpowered shape memory alloy actuator system: I. Numerical analysis // Smart Mater Struct, 2007, Vol. 16, pp. 81–94.
19. Jun H.Y., Rediniotis O.K., Lagoudas D.C. Development of a fuel-powered shape memory alloy actuator system: II. Fabrication and testing // Smart Mater Struct, 2007, Vol. 16, pp. 95–107.
20. Bandyopadhyay K. Smart materials and aerospace structures // SPIE-3903, 1999.
21. Mabe J., Calkins F., Alkislar M. Variable Area Jet Nozzle Using shape memory alloy actuators in an antagonistic design // SPIE-6930, 2008.
22. Travis L., Randolph H., Roberto J., et al. Testing of SMA-enabled active chevron prototypes under representative flow conditions // SPIE-6928, 2008.
23. Selig M., Smits A. Effect of periodic blowing on attached and separated supersonic turbulent boundary layers // AIAA J., 1991, Vol. 29, pp. 1651– 1658.
24. Ibrahim M., Kunimura R., Nakamura Y. Mixing enhancement of compressible jets by using unsteady microjets as actuators // AIAA J., 2002, Vol. 40, pp. 681–688.
25. Choi J., Wee D., Alvi F. Active noise control of supersonic impinging jets using pulsed microjets // AIAA 2005-0798, 2005.
26. Zhuang N., Alvi F., Alkislar M., et al. Supersonic cavity flows and their control // AIAA J., 2006, Vol. 44, pp. 2118–2128.
27. Seifert A., Darabi A., Wygnanski I. Delay of airfoil stall by periodic excitation // Aircraft J., 1996, Vol. 33, pp. 691–698.
28. Choi J., Annaswamy A., Lou H., et al. Active control of supersonic impingement tones using steady and pulsed microjets // Exp. Fluids, 2006, Vol. 41, pp. 841–855.
29. Bons J., River R., Sondergaard R. The fluid dynamic of LPT blade separation control using plused jets // Turbomacb J., 2002, Vol. 124, pp. 77–85.
30. Warsop C., Hucker M., Press A., et al. Pulsed air-jet actuators for flow separation control. Flow Turbul. Combust., 2007, Vol. 78, pp. 255–281.
31. Williams D., Cornelius D., Rowley C. Supersonic Cavity Response to Open-loop Forcing. Berlin: Springer, 2007.
32. Raghu S. Feedback-free fluidic oscillator and method // US Patent, 2001, No. 6253782.
33. Gokoglu S., Kuczmarski M., Culley D., et al. Numerical studies of a supersonic fluidic diverter actuator for flow control // AIAA 2010-4415, 2010.
34. Solomon T., Kumar R., Alvi F. High bandwidth micro-actuators for active flow control // AIAA 2008-3042, 2008.
35. Selby G., Lin J., Howard F. Control of low-speed turbulent separated flow using jet vortex generators // Exp. Fluids, 1992, Vol. 12, pp. 394–400.
36. Khan Z. On vortex generating jets // Int. J. Heat Fluid Flow, 2000, Vol. 21, pp. 506–511.
37. Epstein A. Power MEMS and microengines // Int. Conf. Solid-State Sens Actuat., 1997, Vol. 2, pp. 753-756.
38. Crittenden T., Glezer A., Funk R., et al. Combustion-driven jet actuators for flow control // AIAA 2001-2768, 2001.
39. Cutler A., Beck B., Wilkes J., et al. Development of a pulsed combustion actuator for high-speed flow control // AIAA 2005-1084, 2005.
40. Bletzinger P., Ganguly B., Wie D., et al. Plasma in high speed aerodynamics // J. Phys. D.: Appl. Phys., 2005, Vol. 38, pp. 33–57.
41. Shang J., Surzhikov S., Kimmel R., et al. Mechanisms of plasma actuators for hypersonic flow control // Prog. Aerospace Sci., 2005, Vol. 41, pp. 642–668.
42. Braun E., Lu F., Wilson D. Experimental research in aerodynamic control with electric and electromagnetic fields // Prog. Aerospace Sci., 2009, Vol. 45, pp. 30–49.
43. Roth J., Sherman D., Wilkinson S. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma // AIAA 98-0328, 1998.
44. Moreau E. Airflow control by non-thermal plasma actuators // J. Phys. D.: Appl. Phys., 2007, Vol. 40, pp. 605–636
45. Corke T.C., Post M.L., Orlov D.M. SDBD plasma enhanced aerodynamics: concepts, optimization and applications // Prog. Aerospace Sci., 2007, Vol. 43, pp. 193–217.
46. Jayaraman B., Shyy W. Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer // Prog. Aerospace Sci., 2008, Vol. 44, pp. 139–191.
47. Corke T.C., Enloe C.L., Wilkinson S.P. Dielectric barrier discharge plasma actuators for flow control // Ann. Rev. Fluid Mech., 2010, Vol. 42, pp. 505–529.
48. Li Y.H., Liang H., Wu Y., et al. Research status of modeling and simulation technology of plasma aerodynamic actuation (in Chinese) // J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2008, Vol. 19, pp. 1–5.
49. Raizer Y. Gas Discharge Physics. New York: Springer, 1991.
50. Cybyk B., Wilkerson J., Grossman K., et al. Computational assessment of the sparkjet flow control actuator // AIAA 2003-3711, 2003.
51. Cybyk B., Wilkerson J., Grossman R. Performance characteristics of the sparkjet flow control actuator // AIAA 2004-2131, 2004.
52. Roth J. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control. Dissertation of Doctor Degree. Austin: The University of Texas at Austin, 2007.
53. Park C., Mehta U.B., Bogdanoff D.W. MHD energy bypass scramjet performance with real gas effects // J. Propul. Power, 2001, Vol. 19, No. 5, pp. 1049–1057.
54. Gaitonde D.V. Three-dimensional flow-through scramjet simulation with MGD energy-bypass // AIAA 2003-0172, January 2003.
55. Macheret S.O., Shneider M.N., Miles R.B. Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization // AIAA, January 2001, Vol. 40, pp. 74–81.
56. Gurijanov E.P., Harsha P.T. Ajax: new direction in hypersonic technology // AIAA Preprint 96-4609, November 1996.
57. Surzhikov, S.T., Shang, J.S. Glow Discharge in Magnetic Field with Heating of Neutral Gas // AIAA Paper 2003-3654, June 2003.
58. Surzhikov, S.T., Shang, J.S. Supersonic Internal Flows with Gas Discharge and External Magnetic Field // AIAA Paper 2003-3625, June 2003.
59. Surzhikov, S.T., Shang, J.S. Numerical Simulation of Subsonic Gas Flows with Gas Discharge and Magnetic Field // AIAA Paper 2003-3759, June 2003.
60. Surzhikov S.T., Shang J.S. Two-component plasma model for two-dimensional glow discharge in magnetic field // J. Comp. Phys., 2004, Vol. 199, pp.437–464.
61. Surzhikov S.T., Shang J.S. Physics of the surface direct current discharge in magnetic field // AIAA 2004-0176, Reno NV, 5–8 January 2004.
62. Bityurin V., Klimov A., Leonov S. Assessment of a concept of advanced flow/flight control for hypersonic flights in atmosphere // AIAA 99-4820, Norfolk, VA, November 1999.
63. Leonnov S., Bityurin V., Savelkin K., Yarantsev D. Effect of Electrical Discharge on Separation Processes and Shocks Position in Supersonic Airflow // AIAA Paper 2002-0355, January 2002.
64. Kolesnichenko Y. Basics in beams MW energy deposition for flow/flight control // AIAA 2004-0669, Reno, NV, January 2004.
65. Leonov S.B., Yarantsev D.A., Gromov V.G., Kuriachy A.P. Mechanisms of flow control by near-surface electrical discharge generation // AIAA 2005-0780, Reno NV, January 2005.
66. Fomin V., Maslov A., Malmuth N., Formichev V., Shashkin A., Korotaeva T., Shipyuk A., Pozdnyakov G. Influence of a CounterflowPlasma Jet on Supersonic Blunt-Body Pressure // AIAA Journal, 2002, Vol. 40, No. 6, pp. 1170–1177.
67. Ganiev Y., Gordeev V., Krasilnikov A., Lagutin V., Otmennikov V., Panasenko A. Aerodynamic Drag Reduction by Plasma and Hot-Gas Injection // Journal of Thermophysics and Heat Transfer, 2000, Vol. 14, No. 1, pp. 10–17.
68. Shang J.S., Menart J., Surzhikov S.T. Hypersonic flow control using surface plasma actuator // Journal of propulsion power, September-October 2008, Vol. 24, No. 5.
69. Lu F.K., Joslin R.D., Miller D.N. Fundamentals and applications of modern flow control // Progress in astronautics and aeronautics // AIAA, May 2009.
70. Osmokrovic L.P., Hanson R.E., Lavoie P. Laminar boundary-layer response to spanwise periodic forcing by Dielectric-Barrier-Discharge plasma-actuator arrays // AIAA 2012-2944, June 2012. DOI: 10.2514/1.J053203.
71. Neretti G. Recent progress in some aircraft technologies. Chapter 3. Active flow control by using plasma actuators. 2016. DOI: 10.5772/62720.
72. Chernyshev S.L., Gamirullin M.D., Kuryachii A.P., Litvinov V.M. Simple design of multiple aerodynamic plasma actuator // Progress in Flight Physics, October 2017, Vol. 9, DOI: 10.1051/eucass/201709253
73. Mariette K. Contrôle en boucle fermée pour la réduction active de traînée aérodynamique des véhicules. Automatique. Robotique. Université de Lyon, 2020. Français.
74. Li Y., Wu Y., Song H., Liang H., Jia M. Plasma Flow Control // Aeronautics and Astronautics, 2011, ISBN: 978-953-307-473-3.
75. Yokoyama H., Tanimoto I., Iida A. Experimental Tests and Aeroacoustic Simulations of the Control of Cavity Tone by Plasma Actuators // Appl. Sci. 2017. DOI: 10.3390/app7080790.
76. Yan H., Liu F., Xu J., Xue Y. Study of oblique shock wave control by surface arc discharge plasma // AIAA 2016-3776, June 2016, DOI: 10.2514/1.J056107.
77. Kurelek J.W., Kotsonis M., Yarusevych S. Superposition of AC-DBD plasma actuator outputs for three-dimensional disturbance production in shear flows // Experiments in Fluids, April 2023. DOI: 10.1007/s00348-023-03616-9.
78. Hehner M.T., Coutinho G., Santos Pereira R.B., Benard N., Kriegseis J. On the interplay of body-force distributions and flow speed for dielectric-barrier dischargew plasma actuators // J. Phys. D.: Appl. Phys., May 2023. DOI: 10.1088/1361-6463/acdade.
79. Meehan K.C. The nanosecond pulsed dielectric barrier discharge plasma actuator for boundary layer separation control. Dissertation for the Degree of Doctor of Philosophy. Princeton University, May 2023.
80. Суржиков С.Т. Сверхзвуковое обтекание заостренной пластины с поверхностным аномальным тлеющим разрядом в магнитном поле // Изв. РАН, МЖГ, 2023, № 6. DOI: 10.31857/S1024708423600598.
81. Суржиков С.Т. Диффузионно-дрейфовая модель поверхностного тлеющего разряда в сверхзвуковом потоке газа // Изв. РАН, МЖГ. 2024. №1.
82. Menart J., Shang J.S., Kimmel R., Hayes J. Effect of Magnetic Fields on Plasma Generated in a Mach 5 Wind Tunnel // AIAA Paper 2003-4165, June 2003.
83. Shang J.S., Surzhikov S.T. Magnetoaerodynamic Actuator for Hypersonic Flow Control // AIAA J., 2005, Vol. 43, No. 8, pp. 1633–1643.
84. Surzhikov S.T. Theoretical and Computational Physics of Gas Discharge Phenomena. Walter de Gruyter GmbH, 2020. 549 p.
85. Surzhikov S.T., Shang J.S. Glow discharge in magnetic field // AIAA 2003-1054, 41st Aerospace Science Meeting, Reno NV, 6–9 January 2003.
86. Surzhikov S.T. Abnormal Glow Discharge between Two Electrodes on Plane with Transverse Magnetic Field // IOP Conf. Ser.: J. Physics: Conf. Series 1250, 2019. DOI: 10.1088/1742-6596/1250/1/012040
87. Surzhikov S T, Shang J S 2005 Viscous interaction on a flat plate with a surface discharge in magnetic field // High Temperature, Vol. 43, No. 1, pp 19–30.
88. Zhang H., Fan B.-C., Chen Z.-H., Li H.-Z. Effect of the Lorentz force on cylinder drag reduction and its optimal location // Fluid Dyn. Res., 2011, Vol. 43, DOI: 10.1088/0169-5983/43/1/015506.
89. Zhang H., Fan B.-C., Chen Z.-H., Chen S., Li H.-Z. Electro–magnetic control of shear flow over a cylinder for drag reduction and lift enhancement // Chinese Phys., 2013, DOI: 10.1088/1674-1056/22/10/104701
90. Braun E.M., Lu F.K., Wilson D.R. Experimental research in aerodynamic control with electric and electromagnetic fields // AIAA Paper 2008-3788, the 39th AIAA Plasmadynamics and Lasers Conference, Seattle, Washington, June 23–26, 2008.
91. Palm P., Meyer R., Ploenjes E., Bezant A., Adamovich I.V., Rich J.W., et al. MHD effect on a supersonic weakly ionized flow // AIAA 2002-2246, Maui, HI, May 2002.
92. Palm P., Meyer R., Bezant A., Adamovich I. V., Rich J. W., Gogineni S. Feasibility study of MHD control of cold supersonic plasma flows // AIAA 2002-0636, Reno, NV; January 2002.
93. Zaidi S.H., Smith T., Macheret S., Miles R.B. Snowplow surface discharge in magnetic field for high speed boundary layer control // AIAA 2006-1006, Reno, NV; January 2006.
94. Menart J., Shang J., Atzbach C., Magoteaux S., Slagel M., Bilheimer B. Total drag and lift measurements in a Mach 5 flow affected by a plasma discharge and a magnetic field // AIAA 2005-0947, Reno, NV; January 2005.
95. Fleeman E.L. Tactical missile design // 2nd ed. Reston, VA, AIAA, 2006.