Modeling the Effect of an Electric Field on Drop Flows




A stand has been developed for modeling the effect of an electric field on the structure and dynamics of drop flows. The system of fundamental equations of fluid mechanics was chosen as the theoretical basis of the technique, including the equations of state for the Gibbs potential and the density of the medium, differential equations of continuity and transfer of momentum, matter and energy, the properties of which are analyzed tak-ing into account the compatibility condition. The estimates of the total energy compo-nents, the main dimensionless parameters of the flows under study, are given. A high-resolution video recording of the flow pattern was carried out under the gravitational separation of a freely falling drop and under the additional action of an external electro-static field. The evolution of the shape and dynamics of the movement of structural components - the drop itself and the satellite, as well as the secondary satellite in the ab-sence of an electric field - is traced.

gravity, high-voltage source, separation, droplet, satellite

Моделирование влияния электрического поля на капельные течения

Разработан стенд для моделирования влияния электрического поля на структуру и динамику капельных течений. В качестве теоретической основы методики выбрана система фундаментальных уравнений механики жидкостей, включаю-щая уравнения состояния для потенциала Гиббса и плотности среды, дифферен-циальные уравнения неразрывности и переноса импульса, вещества и энергии, свойства которой анализируются с учетом условия совместности. Приведены оценки компонентов полной энергии, основных безразмерных параметров изу-чаемых течений. Проведена высокоразрешающая видеорегистрация картины те-чения при гравитационном отрыве свободно падающей капли и при дополни-тельном воздействии внешнего электростатического поля. Прослежена эволю-ция формы и динамики движения структурных компонентов – собственно кап-ли и сателлита, а также вторичного сателлита в отсутствие электрического поля.

гравитация, высоковольтный источник, отрыв, капля, сателлит


1. Guthrie F. On drops—Part II // Proc. R. Soc. Lond. 1863. V. 13. pp. 457–483. https://doi.org/10.1098/rspl.1863.0091.
2. Thomson J.J.; Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. Lond. 1885. V. 29. pp. 417–436. https://doi.org/10.1098/rspl.1885.0034.
3. Worthington A.M. A study of splashes. 1908. London, New York, Bombay, Calcutta: Longmans, Green, and Co.129 p.
4. Zeleny, J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review. 1914. V. 3(2). pp. 69–91. doi:10.1103/physrev.3.69
5. Zeleny J. On the conditions of instability of electrified drops, with application to the electrical dis-charge from liquid points // Proc. Cambridge Philos. Soc. 1914. V. 18. рart 1. p. 71. DOI:https://doi.org/10.1103/PhysRev.3.69
6. Zeleny J. Instability of Electrified Liquid Surfaces // Physical Review. 1917. V. 10(1). pp. 1–6. doi:10.1103/physrev.10.1
7. Thompson D. W. On Growth and Form, 2nd ed.; Dover: Mineola, New York, USA. 1992. 1116 p.
8. Cloupeau M., Prunet-Foch B. Electrohydrodynamic spraying functioning modes: a critical review // Journal of Aerosol Science. 1994. V. 25 (6). pp. 1021-1036.
https://doi.org/10.1016/0021-8502(94)90199-6.
9. Illarionva E.K., Syrovatskiy I.P. Osnovy metoda mass-spectrometrii: prakticheskoe primenenie metoda // Irkutsk: IGMU. 2021. 49 P. (In Russ.)
10. Law S. E. Electrostatic Pesticide Spraying: Concepts and Practice // IEEE Transactions on Indus-try Applications. V. IA-19(2). pp.160–168. doi:10.1109/tia.1983.4504176
11. Glushko G., Ivanov I., Kryukov I. Numerical simulation of separated flow in nozzles//Physical-Chemical Kinetics in Gas Dynamics. 2010. V.9. http://chemphys.edu.ru/issues/2010-9/articles/143/
12. Pankratieva I., Polyanskiy V. Electrization of weakly conducting multicomponent liquids at lami-nar flow in a flat channel//Physical-Chemical Kinetics in Gas Dynamics. 2006. V.4. http://chemphys.edu.ru/issues/2006-4/articles/92/
13. Peregrine, D., Shoker, G., Symon, A. The bifurcation of liquid bridges // Journal of Fluid Me-chanics. 1990. V. 212(1), 25-39. doi:10.1017/S0022112090001835
14. Chashechkin Yu. D., Prokhorov V. E. Transformation of the bridge during separation of a drop-let // Journal of Applied Mechanics and Technical Physics. 2016. V. 57, No. 3. pp. 402–415. doi: 10.15372/PMTF20160303
15. Chashechkin Yu. D. Oscillations and Short Waves on a Free Falling Drop Surface (Experiment and Theory) // Proceedings Topical Problems of Fluid Mechanics. 2019. Prague, February 20-22, 2019. pp. 45-52. 248 p. DOI: https://doi.org/10.14311/TPFM.2019.007.
16. Eggers J. Nonlinear dynamics and breakup of free-surface flows // Reviews of Modern Physics. 1997. V. 69(3). pp. 865–930. doi:10.1103/revmodphys.69.865
17. Wilkes E., Phillips S. D., Basaran O. A. Computational and experimental analysis of dynamics of drop formation // Physics of Fluids. 1999. V. 11(12). pp. 3577–3598. doi:10.1063/1.870224
18. Bierbrauer F., Kapur N., and Wilson M. C. T. Drop Pinch-Off for Discrete Flows from a Capil-lary // ESAIM: Proceedings. 2013. V. 40. pp. 16–33. doi:10.1051/proc/201340002
19. Chashechkin Yu.D., Ilinykh A. Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12, Iss.4, 374. https://doi.org/10.3390/axioms12040374
20. Notz P. K., Chen A. U., Basaran O. A. Satellite drops: Unexpected dynamics and change of scal-ing during pinch-off // Physics of Fluids. 2001. V. 13(3). pp. 549–552. doi:10.1063/1.1343906
21. Feistel, R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and be-yond // Ocean. Sci. 2018. V. 14. pp. 471–502. https://doi.org/10.5194/os-14-471-2018.
22. Harvey A. H, Hrubý J., Meier K. Improved and Always Improving: Reference Formulations for Thermophysical Properties of Water // Journal of Physical and Chemical Reference Data. 2023. V. 52, 011501; doi: 10.1063/5.0125524.
23. Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. V. 6. Gidrodinamika. M: Nauka. 1986.
24. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. Iss.4. 286. https://doi.org/10.3390/axioms10040286.
25. Chashechkin Yu.D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous ex-ponentially stratified fluid in a uniform gravity field // Axioms.2022. V. 11. Issue 8. 402. doi: 10.3390/axioms11080402.
26. Takamatsu T., Yamaguchi M., Katayama T. Formation of single charged drops in a non-uniform electric field // Journal of Chemical Engineering of Japan. 1983. V. 16(4). pp. 267–272. doi:10.1252/jcej.16.267.
27. Rosell-Llompart J.; Grifoll J.; Loscertales I.G. Electrosprays in the cone-jet mode: from Taylor cone formation to spray development // Journal of Aerosol Science. 2018. V. 18. pp. 2-31. doi:10.1016/j.jaerosci.2018.04.008.
28. The International Association for the Properties of Water and Steam. http://www.iapws.org/.
29. Gibbs J.W. The scientific papers in two volumes. Vol. 1. Thermodynamics. New York: Long-mans, Green, and Co., 1906.
30. Eisenberg D., Kautzman W. Structure and Properties of Water. Oxford, Clarendon Press, 1969.
31. Тeschke O., de Souza E.F. Water molecule clusters measured at water/air interfaces using atomic force microscopy // Phys. Chem. Chem. Phys. 2005. V. 7(22), pp. 3856 -3865.
32. Bunkin N.F., Indukayev K.V., Ignat'yev P.S. Spontaneous self-organization of gas microbubbles in a liquid. Zhurn. Eksper. Teoret. Fiz., 2007, vol. 131, no. 3, pp. 539-555 (In Russ.).
33. Lenard, P. Zur Wasserfalltheorie der Gewitter // Anal. Phys. 1921, 370, 629.
34. Karakashev S.I., Grozev N.A. The Law of Parsimony and the Negative Charge of the Bubbles // Coatings. 2020. V. 10. 1003; doi:10.3390/coatings10101003.
35. Malenkov G.G. Structure and dynamics of liquid water // J Struct Chem 47 (Suppl 1), S1–S31 (2006). https://doi.org/10.1007/s10947-006-0375-8
36. Malenkov G.G. Structure and dynamics of surfaces of thin films and water microdroplets // Colloid J. 2010. V.72. pp. 653–662. https://doi.org/10.1134/S1061933X1005011X
37. Chashechkin Yu.D. Packets of capillary and acoustic waves of drop impact // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2021. No. 1 (94). P. 73–92 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2021-1-73-91
38. Collins R. T., Jones J. J., Harris M. T., and Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones // Nature Physics. V. 4(2). pp. 149–154. doi:10.1038/nphys807.
39. Notz P.K., Chen A.U., Basaran O. A. Satellite drops: Unexpected dynamics and change of scal-ing during pinch-off // Physics of Fluids. 2001. V. 13(3), pp. 549–552. doi:10.1063/1.1343906
40. Unique Research Facility "Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the transport of impurities in the ocean and atmosphere (URF "HPC IPMech RAS")", http://www.ipmnet.ru/uniqequip/gfk. 2022.