Supersonic flow modes of annular cavities at angles of attack




Experimental studies of supersonic flow around axisymmetric annular cavities on pointed cylindrical bodies at angles of attack have been carried out. Unambiguous and ambiguous modes of flow around the cavity were observed in a wide range of changes in the determining parameters (relative length of the cavity L/h, angle of attack α). Reversible and irreversible switching of flow modes in the cavity occurred with a continuous change in the determining parameters. In a closed cavity, with an increase in the angle of attack, a local increase in pressure on the leeward side of the rear projection was recorded, exceeding the pressure on the windward side of the same projection.

axisymmetric cavity, supersonic flow, angle of attack, flow separation, hysteresis


Volume 24, issue 3, 2023 year


Режимы сверхзвукового обтекания кольцевых каверн под углами атаки

Проведены экспериментальные исследования сверхзвукового обтекания осесимметричных кольцевых каверн на заостренных цилиндрических телах под углами атаки. В широком диапазоне изменения определяющих параметров (относительная протяженность каверны, угол атаки) наблюдались однозначные и неоднозначные режимы обтекания каверны. При непрерывном изменении определяющих параметров происходили обратимые и необратимые переключения режимов обтекания каверны. При увеличении угла атаки в замкнутой каверне зарегистрировано локальное повышение давления на подветренной стороне заднего уступа, превышающее по величине давление на наветренной стороне того же уступа кольцевой каверны.

осесимметричная каверна, сверхзвуковой поток, угол атаки, отрыв потока, гистерезис


Volume 24, issue 3, 2023 year



1. Charwat A.F., Roos J.N., Dewey F.C., Hitz J.A. An Investigation of Separated Flows-Part I: The Pressure Field // Journal of the Aerospace Sciences, 1961. 28, 457-470.
2. Chang P.K. Separation of Flow. Vol. 2, Pergamon, Oxford, 1970
3. Stalling R.L., Wilcox F.J. Experimental cavity pressure distribution at supersonic speeds. NASA TP 2683, 1987.
4. Zhang J., Morishita E., Okunuki T., Itoh H. Experimental investigation on the mechanism of flow-type changes in supersonic cavity flows // Transactions of the Japan Society for Aeronautical and Space Sciences. 2002. 45 (149), 170-179. https://doi.org/10.2322/tjsass.45.170
5. Shvetz A.I. Investigation of the Flow in an Annular Cavity in a Cylindrical Body in a Supersonic Stream, Fl. Dyn. 37 (1) (2002) 109-116. https://doi.org/10.1023/A:1015143102405
6. Guvernyuk S.V., Zubkov A.F., and Simonenko M.M. Experimental Investigation of the Supersonic Flow over an Axisymmetric Annular Cavity, J. Eng. Phys. and Thermophys. 89 (3) (2016) 678-687. https://doi.org/10.1007/s10891-016-1426-4.
7. Mohri K., Hillier R. Computational and experimental study of supersonic flow over axisymmetric cavities // Shock Waves. 2011. 21, 175-191. https://doi.org/10.1007/s00193-011-0312-4.
8. Lawson S.J., Barakos G.N. Review of numerical simulations for high-speed, turbulent cavity flows // Progress in Aerospace Sciences. 2011. 47, 186-216. https://doi.org/10.1016/j.paerosci.2010.11.002.
9. Yilmaz I., Ayli E., Aradag S. Investigation of the Effects of Length to Depth Ratio on Open Supersonic Cavities Using CFD and Proper Orthogonal Decomposition // The Scientific World Journal, 2013. Vol. 2013, Id 810175, 12p. https://doi.org/10.1155/2013/810175.
10. Ivanov I.E., Kryukov I.A., Larina E.V., Tarasevich A. G. Numerical Simulation of Flow over Axisymmetric Body with Annular Cavity // Physical-Chemical Kinetics in Gas Dynamics. 2015. V16 (2). http://chemphys.edu.ru/issues/2015-16-2/articles/583/.
11. Shishaeva A.S., Simonenko M.M., Guvernyuk S.V., Aksenov A.A. Numerical Simulation of Aerodynamic Hysteresis in Supersonic Flow Over an Axisymmetric Body with Annular Cavity in FlowVision CFD Software // Physical-Chemical Kinetics in Gas Dynamics 2019 V20 (3). http://chemphys.edu.ru/issues/2017-18-1/articles/696/.
12. Ivanov I.E., Kryukov I.A., Larina E.V., and Glushko G.S. Turbulent flow over an axisymmetric body with annular cavity // Journal of Physics: Conference Series. 2017. V. 815 (012017). https://doi.org/10.1088/1742-6596/815/1/012017.
13. Guvernyuk S.V., Zubkov A.F., and Simonenko M.M. On Supersonic Flow over Circular Cavities at Angle of Attack, Phys.-Chem. Kin. Gas Dyn. 19(1) (2018). http://doi.org/10.33257/PhChGD.19.1.734.
14. Guvernyuk S.V., Zubkov A.F., Simonenko M.M., and Shvetz A.I. Experimental investigation of three-dimensional supersonic flow past an axisymmetric body with an annular cavity, Fl. Dyn. 49 (4) (2014) 540-546. https://doi.org/10.1134/S0015462814040140.
15. Guvernyuk S., Simonenko M., and Zubkov A. Experimental study of supersonic flow around an axisymmetric annular cavity at angles of attack. // Acta Astronautica. 2021. Vol. 180. P. 693–700. https://doi.org/10.1016/j.actaastro.2021.01.013.
16. Jeyakumar S., Assis S.M., and Jayaraman K.. Experimental study on the characteristics of axisymmetric cavity actuated supersonic flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2017. 231(14), P. 2570–2577. https://doi.org/10.1177/0954410016667149
17. Ukai T., Zare-Behtash H., Erdem E., Lo K.H., Kontis K., and Obayashi S. Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow. Experimental Thermal and Fluid Science. 2014. V. 52, P. 59-67. http://doi.org/10.1016/j.expthermflusci.2013.08.022
18. Cattafesta L.N., Song Q., Williams D.R., Rowley C.W., Alvi F.S. Active Control of Flow-Induced Cavity Oscillations // Progress in Aerospace Sciences. 2008. 44, 479-502. https://doi.org/10.1016/j.paerosci.2008.07.002
19. Zhuang N., Alvi F.S., Alkislar M.B., Shih C. Supersonic Cavity Flows and their control // AIAA Journal. 2006. 44 (9), 2118-2128. https://doi.org/10.2514/1.14879
20. Aradag S., Gelisli K.A., and Yaldir E.C. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics // International Journal of Aerospace Engineering. 2017. V. 2017. Article ID 8253264, 24 pages. https://doi.org/10.1155/2017/8253264
21. Shishaeva A.S., Simonenko M.M., Guvernyuk S.V., Aksenov A.A. Numerical Simulation of Flow Control by a Heat Pulse under Aerodynamic Hysteresis in Supersonic Flow over an Axisymmetric Body with Annular Cavity // Physical-Chemical Kinetics in Gas Dynamics. 2019. V20 (3). http://doi.org/10.33257/PhChGD.20.3.834
22. Chernyi G.G. et al. (eds.), Aerodynamic Setups of the Research Institute of Mechanics, Moscow State University [in Russian], Moscow Univ. Press, Moscow, 1985. https://www.imec.msu.ru/pages/02/10/10/1374853/.
23. Malik M.R. Prediction and control of transition in supersonic and hypersonic boundary layers. 1989. AIAA Journal. V. 27 (11) P. 1487-1493.
24. Mateer G.G. The Effect of Angle of Attack on Boundary-Layer Transition on Cones. 1972. AIAA Journal. V. 10 (8) P. 1127-1129.
25. Schneider S.P., Hypersonic laminar–turbulent transition on circular cones and scramjet forebodies. Progress in Aerospace Sciences. 2004. V. 40 (1,2), P. 1-50. https://doi.org/10.1016/j.paerosci.2003.11.001.
26. Simonenko M.M., Guvernyuk S.V., and Kuzmin A.G. On the supersonic flow over an axisymmetric step at an angle of attack // AIP Conference Proceedings., 2018.V. 2027 (030023). https://doi.org/10.1063/1.5065117