For the conditions of the experiment in supersonic under-expanded jet of high-enthalpy air with ceramic samples HfB2-30об.%SiC and (HfB2-30об.%SiC)-2об.% CG, the numerical method in the framework of the Navier-Stokes equations and simplified Maxwell equations was used to simulate the air plasma flow in the discharge channel of the plasmatron and the flow of under-expanded jet of dissociated air around a cylindrical holder with a ceramic samples. The effective recombination coefficients of N and O atoms are determined for HfB2-30об.%SiC и (HfB2-30об.%SiC)-2об.% CG surfaces at 1716 и 1750 K wall temperatures through comparison of measured and calculated stagnation point heat fluxes.
Газодинамические аспекты эксперимента по теплообмену поверхности ультравысокотемпературной керамики в недорасширенной струе диссоциированого воздуха
Для условий эксперимента на индукционном ВЧ-плазмотроне ВГУ-4 (ИПМех РАН) в сверхзвуковой струе высокоэнтальпийного воздуха численным методом в рамках уравнений Навье-Стокса и упрощенных уравнений Максвелла выполнено моделирование течения плазмы воздуха в разрядном канале плазмотрона и обтекания недорасширенной струей диссоциированного воздуха цилиндрической державки с керамическим образцом. Представлены поля газодинамических параметров и анализируется сложная картина струйного обтекания модели неравновесно диссоциированным многокомпонентным воздухом. Из сопоставления экспериментальных и расчетных данных по тепловым потокам в центре керамических образцов определены эффективные коэффициенты рекомбинации атомов N и O на поверхностях составов HfB2-30об.%SiC и (HfB2-30об.%SiC)-2об.% CG при температурах 1716 и 1750 K.
1. Squire T.H., Marschall J. Material property requirements for analysis and design of UHTC components in hypersonic applications //Journal of the European Ceramic Society. 2010. V. 30. №. 11. P. 2239-2251. 2. Savino R., Criscuolo L., Di Martino G.D., Mungiguerra S. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications //Journal of the European Ceramic Society. 2018. V. 38. №. 8. P. 2937-2953. 3. Fahrenholtz W.G., Wuchina E.J., Lee W.E., Zhou Y. Ultra-high temperature ceramics: materials for extreme environment applications. John Wiley & Sons, 2014. 4. Justin J.F., Jankowiak A. Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability //Aerospace Lab. 2011. №. 3. P. 1-11. 5. Simonenko E.P., Sevast’yanov D.V., Simonenko N.P., Sevast’yanov V.G., Kuznetsov N.T. Promising ultra-high-temperature ceramic materials for aerospace applications // Russian Journal of Inorganic Chemistry. 2013. V. 58. №. 14. P. 1669-1693. 6. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Lysenkov A.S., Nagornov I.A., Sevastyanov V.G., Kuznetsov N.T. Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet // Russian Journal of Inorganic Chemistry. 2021. V. 66. № 9. P. 1405-1415. 7. Kolesnikov A.F., Kuznetsov N.T., Muravyeva T.I., Nagornov I.A., Sakharov V.I., Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Chaplygin A.V., Shcherbakova O.O. Investigation of Heat Transfer to HfB2-SiC-Based Ceramics in Underexpanded Dissociated Nitrogen Flows and Analysis of the Surface // Fluid Dynamics. 2022. V. 57. №. 4. P. 513-523. 8. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Lysenkov A.S., Nagornov I.A., Simonenko T.L., Gubin S.P., Sevastyanov V.G., Kuznetsov N.T. Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow //Journal of the European Ceramic Society. 2022. V. 42. №. 1. P. 30-42. 9. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Sakharov V.I., Lysenkov A.S., Nagornov I.A., Kuznetsov N.T. Effect of 2 vol % graphene additive on heat transfer of ceramic material in underexpanded jets of dissociated air //Russian Journal of Inorganic Chemistry. 2022. V. 67, №. 12. P. 2050–2061. 10. Kolesnikov A., Sakharov V., Chaplygin A. V. Experimental and numerical simulation of the heat transfer of the UHTC surface in under-expanded dissociated nitrogen jets//Physical-Chemical Kinetics in Gas Dynamics. 2022. V.23, iss. 1. http://chemphys.edu.ru/issues/2022-23-1/articles/979/ [in Russian] 11. Gordeev, A. N., Kolesnikov, A. F., Indukcionnye plazmotrony serii VGU (Induction plasmatrons of the VGU series), V sb. «Aktual'nye problemy mehaniki. Fiziko-himicheskaja mehanika zhidkostej i gazov». M.: Nauka, 2019, pp. 151–177 [in Russian]. 12. Vasilevsky S., Gordeev A., Kolesnikov A., Sakharov V., Simonenko E. P., Simonenko N. Experimental and numerical study of heat transfer to cylindrical copper models and HfB2-SiC ceramic samples in high-enthalpy air jets using RF-plasmatron IPG-4//Physical-Chemical Kinetics in Gas Dynamics. 2018. V.19, iss. 1. http://chemphys.edu.ru/issues/2018-19-1/articles/731/ [in Russian] 13. Sakharov, V. I., “Numerical simulation of thermally and chemically nonequilibrium flows in underexpanded induction plasmatron jets,” Fluid Dynamics, Vol. 42(6), 2007, pp. 1007–1016. 14. Afonina N.E., Gromov V.G., Sakharov V. I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Spase Vehicles. Cologne, Germany, 2004. SP 563. Noordwijk: ESTEC. P. 323-328, 2004.