High-speed video recording was used to trace the matter transfer pattern of a freely falling col-ored water drop and the deformation of the free surface of the target fluid in the intrusive mode, when the available potential surface energy (APSE) exceeds the drop kinetic energy. At the initial stage of submerging, the free surface of the unified drop-target fluid system remains convex. The inflowing drop forms a lenticular intrusion in the fluid bulk, which gradually transforms into a vortex ring. The cavity begins to form with a time delay Δt = 10-12 ms. The surface of the cavity includes traditional flat, spherical, as well as cylindrical and conical sec-tions moving at different velocities. The temporal variability of the intrusion and cavern ge-ometry has been traced. In the wake, past the sub-merging ring, the drop matter is preserved in the form of individual fibers.
Распределение вещества капли в принимающей жидкости в интрузивном режиме слияния
Методом высокоскоростной видеорегистрации прослежена картина переноса вещества свободно падающей капли воды и деформация свободной поверхности принимающей жидкости в интрузивном режиме, когда доступная потенциальная поверхностная энер-гия (ДППЭ) превышает кинетическую энергию капли. На начальном этапе слияния сво-бодная поверхность объединенной системы «капля – жидкость» остается выпуклой. Втекающая капля образует в толще жидкости чечевицеобразную интрузию, которая по-степенно преобразуется в вихревое кольцо. Каверна начинает формироваться с запазды-ванием Δt = 10-12 мс. Поверхность каверны включает участки различной формы – тра-диционные плоские и сферические, а также цилиндрические и конические, движущиеся с различной скоростью. Прослежена временная изменчивость геометрии интрузии и ка-верны. В следе за погружающимся кольцом вещество капли сохраняется в виде отдель-ных волокон.
1. Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of dis-charge. Amer. J. Sci., Second Ser. 1858, 26, 246–258. 2. Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. London. 1885, 29, 417–436 3. Worthington A.M., Cole R.S. Impact with a liquid surface, studied by the aid of instantaneous pho-tography. Phil. Trans. R. Soc. Lond. A. 1897, 189, 137–148 4. Worthington A.M. A study of splashes. Longmans, Green and Co: London, UK, 1908; 129 p. 5. Edgerton H.E., Killian Jr., J.R. Flash. Hale, Cushman and Flint: Boston, USA, 1939; 203 p. 6. Li E. Q., Thoraval M.-J., Marston J. O., Thoroddsen S. T. Early azimuthal instability during drop impact. J. Fluid Mech. 2018, 848, 821–835. https://doi.org/10.1017/jfm.2018.383. 7. Оkabe J., Inoue S. The Generation of Vortex Ring. Kyushu Univ., Rep. Res. Inst. Appl. Mech. 1960, 8(32), 91–101 8. Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop. Phys. of Fluids, 1994, 6(2), 564–576. 9. Chashechkin Y. D., Ilinykh A. Y. The delay in cavity formation in the intrusive mode of coalescence of a freely falling drop with a target liquid // Doklady Physics. 2021. Vol. 66, no. 1. P. 20–25. DOI: 10.1134/s102833582101002x. 10. Chashechkin Y. D., Ilinykh A. Y. Drop decay into individual fibers at the boundary of the contact area with the target fluid // Doklady Physics. 2021. Vol. 66, no. 4. P. 101–105 DOI: 10.1134/S1028335821040078. 11. Chashechkin Y. D., Ilinykh A. Y. Banded structures in the distribution pattern of a drop over the sur-face of the target fluid // Doklady Physics. 2018. Vol. 63, no. 7. P. 282–287. DOI: 10.1134/S1028335818070066. 12. Chashechkin Y. D. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izvestiya - Atmospheric and Oceanic Physics. 2019. Vol. 55, no. 3. P. 285–294. DOI: 10.1134/S0001433819020026. 13. Ersoy N. E., Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film. Phys. of Fluids, 2019, 31(1), 012107. 14. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows. Axioms, 2021, 10(4), 286. 15. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. Ocean. Sci. 2018, 14, 471–502. 16. Landau L. D., Lifshitz E. M. Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Mos-cow, 1986; Pergamon, New York, 1987). 17. Dubrovin K., Zarvin A., Gorbachev Y., Yaskin A., Kalyada V. V. Features of the energy exchange process in a clustered argon stream at the initiation of radiation by an electron beam//Physical-Chemical Kinetics in Gas Dynamics. 2022. V.23, iss. 4 [In Russian]. DOI: 10.33257/PhChGD.23.4.1007 18. Emelyanov V., Teterina I., Volkov K. Drag and heat transfer of metal and oxide agglomerates in flow of combustion products of solid propellant // Physical-Chemical Kinetics in Gas Dynamics. 2020. V.21, iss. 1 [In Russian]. DOI: 10.33257/PhChGD.21.1.893 19. GFK IPMech RAS: Hydrophysical Complex for Modeling Hydrodynamic Processes in the Environ-ment and their Impact on Underwater Technical Objects, as well as the Spread of Impurities in the Ocean and Atmosphere. http://www.ipmnet.ru/uniqequip/gfk/#equip. 20. Chashechkin Y. D., Ilinykh A. Y. Multiple emissions of splashes upon drop impact // Doklady Phys-ics. 2020. Vol. 65, no. 10. P. 366–370. DOI: 10.1134/s1028335820100067. 21. Chashechkin Yu. D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous expo-nentially stratified fluid in a uniform gravity field // Axioms. 2022. V. 11(8). 402. doi: 10.3390/axioms11080402. 22. Rayleigh L. On the Capillary Phenomena of jets // Proceedings of the Royal Society of London 1879. 29. 71–97. 23. Chashechkin Y. D., Prokhorov V. E. Transformation of the bridge during drop separation // Journal of Applied Mechanics and Technical Physics. 2016. Vol. 57, no. 3. P. 402–415. DOI: 10.1134/S0021894416030032 24. Chashechkin Y. D., Prokhorov V. E. Visualization of the flow pattern of the impact of a freely falling drop during the generation of sound packets // Physical-Chemical Kinetics in Gas Dynamics. 2022. V.23, iss. 5 [In Russian]. DOI:10.33257/PhChGD.23.5.1011