Application of Quasi-Stationary eRC Models for the Calculation of Non-Equilibrium Radiation of Shock Waves at Velocity about 10 km/s

A computational electron-radiation-collision (eRC) model of physicochemical processes and radiation processes in strong shock waves in air at velocities of about 10 km/s is pre-sented. The author's calculation model of the rates of electronic excitation of diatomic molecules in collisions with electrons and the lifetimes of excited states, based on the use of ab-initio data for the Einstein coefficients, is used. The electron temperature is predict-ed by solving the electron energy conservation equation. The calculated data are compared with experimental data for a shock wave in air at a speed of 10.8 km/s.

shock waves at velocities of about 10 km/s, nonequilibrium radiation of strong shock waves, relaxation physicochemical kinetics behind the front of strong shock waves, radia-tive-collision models, experimental data on nonequilibrium radiation, models of excitation of electronic states of diatomic molecules upon collision with electrons.

Volume 23, issue 4, 2022 year

Применение квазистационарных eRC-моделей для расчета неравновесного излучения ударных волн при скорости порядка 10 км/с

Представлена расчетная электронно-радиационно-столкновительная (eRC) модель физи¬ко-химических процессов и радиационных процессов в сильных ударных вол-нах в воздухе при скоростях порядка 10 км/с. Используется авторская расчетная мо-дель скоростей электронного возбуждения двухатомных молекул при столкновениях с электронами и времен жизни возбужденных состояний, основанная на использова-нии ab-initio данных для коэффициентов Эйнштейна. Электронная температура предсказывается путем решения уравнения сохранения энергии электронов. Расчет-ные данные сравниваются с экспериментальными данными для ударной волны в воз-духе при скорости 10.8 км/с.

ударные волны при скоростях порядка 10 км/с, неравновесное излучение сильных ударных волн, релаксационная физико-химическая кинетика за фронтом сильных ударных волн, радиационно-столкновительные модели, экспериментальные данные по неравновесному излучению, модели возбуждения электронных состояний двух-атомных молекул при столкновении с электронами.

Volume 23, issue 4, 2022 year

1. Zeldovich Ya.B., Raizer Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press. New-York. 1966. 916 p.
2. Ye. V. Stupochenko, S. A. Losev, A. I. Osipov Relaxation in Shock Waves. Springer Berlin, Heidelberg. 1966. 394 p.
3. Kuznetsov N.M. Thermodynamic functions and shock adiabates of air at high temperatures. M.: Mashinostroenie.1965. [in Russian]
4. Elyashevich M.A. Atomic and molecular spectroscopy. M.: URSS. 2001. 894 p. [in Russian]
5. Kondratiev V.N. Structure of atoms and molecules. M.: GIFML. 1959.524 с. [in Russian]
6. Frish S.E. Optical spectra of atoms. M., L.: GIFML. 1963. 640 с. [in Russian]
7. Hartree D.R. The Calculation of Atomic Structures. New York: Wiley; London: Chapman and Hall. 1957.
8. Herzberg G. The Spectra and Structures of Simple Free Radicals: An Introduction to Molecular Spectroscopy. Dover Publications. 2012.
9. Landau L.D., Lifshitz E.M. Quantum mechanics. Non-relativistic theory. М.: Science. 1974. 752 p. [in Russian]
10. Blokhintsev D.I. Fundamentals of quantum mechanics. М.: Science. 1976. 664 p. [in Russian]
11. Clark J., McChesney M. Dynamics of real gases. M.: Mir.1967. 566 p. [in Russian]
12. Bond J., Watson K., Welch J. Physical theory of gas dynamics. Publisher: M.: Mir.1968. 556 p. [in Russian]
13. Agafonov V.P., Vertushkin V.K., Gladkov A.A. and etc. Non-equilibrium physical and chemical processes in aerodynamics. М.: Mashinostroenie. 1972. 344 p. [in Russian]
14. Park C. Nonequilibrium Hypersonic Aerothermodynamics. Wiley-Inter-science Publication. J.Wiley & Sons. New York. 1990.
15. Landau L.D., Lifshitz E.M. Mechanics. М.: Science. 1965. 224 p. [in Russian]
16. Bertin J.J. Hypersonic Aerothermodynamics. AIAA Educational Series. AIAA, Inc., Washing-ton, DC. 1994. 608 p.
17. Pauli W. In "Festschrift zum 60. Geburtstage A.Sommerfeld" (Hirzel, Leipzig). 1928. p. 30.
18. Surzhikov S., Shang J. eRC Model for Prediction of Molecular Bands Radiation for Stardust En-try Conditions// AIAA 2014-2490. 2014. 42 p.
19. Losev S.A., Osipov A.I., Investigation of non-equilibrium phenomena in shock waves // UFN.1961. T. LXXIV. Issue 3. pp.395-434. [in Russian]
20. Griem H. Principles of Plasma spectroscopy. Cambridge Monographs on Plasma Physics, Series Number 2. 1969. 452 p.
21. Ambartsumyan V.A., Mustel E.R., Severny A.B. theoretical astrophysics. Moscow: Gostekhiz-dat. 1952. 635 p. [in Russian]
22. Stepanov N.F. Quantum mechanics and quantum chemistry. М.: MSU. 2001. 519 p. [in Russian]
23. Bates D.R., Damgaard A. The calculation of absolute strengths of spectral lines // Phil. Trans. Roy. Soc. 1949. V. 242. pp. 101-111.
24. Peach G.A. Continuous absorption coefficients for non-hydrogenic atoms // Memoirs of the Royal Astronomical Society. 1970. V. 73. Part.1. P. 1-123. also: Peach G.A. Revised General Formula for the Calculation of Atomic Photo-ionization Cross Sections // Mem. Roy. Astr. Soc. 1967. V. 71. P. 13-27.
25. Polak L.S., Goldenberg M.Ya., Levitsky A.A.Computational methods in chemical kinetics. М., Science, 1984, 280 p. [in Russian]
26. Moore C.E. Atomic energy levels. NBS Circular 467. Washington D.C. V. 1.-1949; V. 2. 1952; V. 3. 1958.
27. Huber, K.P., Herzberg, G. (1979). Constants of diatomic molecules. In: Molecular Spectra and Molecular Structure. Springer, Boston, MA.
28. Keck C.K., Camm J.C., Kivel B. and Wentink T. Jr. Radiation from Hot Air Part II. Shock Tube Study of Absolute Intensities// Annals of Physics. 1959. Vol. 7. pp. 1-38.
29. Thomas G.M. and Menard W.A. Experimental Measurements of Nonequilibrium and Equilibri-um Radiation from Planetary Atmospheres// AIAA Journal. Vol. 4. No. 2. 1966. pp. 227-237.
30. Kuksenko B.V., Losev S.A. Excitation of vibrations and decay of diatomic molecules during atom-molecular collisions in a high-temperature gas // Dokl. Academy of Sciences of the USSR. 1969. T.185. No. 1. P.69–72. [in Russian]
31. Losev S.A., Generalov N.A. On the study of the phenomena of excitation of oscillations and the decay of oxygen molecules at high temperatures // Dokl. Academy of Sciences of the USSR, 1961, Vol. 141, No. 5. pp. 1072–1075. [in Russian]
32. Collins, D.J., Livingston, F.R., Babineaux, T.L. and Morgan, N.R. Hypervelocity Shock Tube. JPL Technical Report No. 32-620, 1964.
33. Wilson J. Ionization rate of air behind high-speed shock waves//Phys. Fluids. 1965.Vol.9.No.10
34. Zhelesnyak, M.B., Mnatsakanyan, A.K. & Yakubov, I.T. Relaxation and none quilibrium radia-tion behind shock waves in air. Fluid Dyn 5, 667–681 (1970).
35. Gorelov V.A., Kildyushova L.A. Peculiarities of Ionization and Radiation Processes Behind Strong Shock Waves in Air // PMTF. 1987. No. 6. pp.23-28. [in Russian]
36. Losev, S.A., Makarov, V.N. & Pogosbekyan, M.Y. Model of the physico-chemical kinetics be-hind the front of a very intense shock wave in air. Fluid Dyn 30, 299–309 (1995).
37. Zalogin G.N., Kozlov P.V., Kuznetsova L.A., Losev S.A., Makarov V.N., Romanenko Yu.V., Surzhikov S.T. Radiation of CO2-N2-Ar mixture in shock waves: experiment and theory// JTF. 2001. V.46. No. 6. pp.10-16. [in Russian]
38. Kudryavtsev N.N., Kuznetsova L.A., Surzhikov S.T. Kinetics and nonequilibrium radiation of CO2-N2 shock waves// AIAA 2001-2728. 19 p.
39. Surzhikov S.T., Sharikov I., Capitelli M., Colonna G. Kinetic Models of Non-Equilibrium Radia-tion of Strong Air Shock Waves// AIAA 2006-0586. 2006. 11 p.
40. Avilova I.V., Biberman L.M., Vorobyov V.S. etc. Optical properties of hot air. M.: Science. 1970. 320 p. [in Russian]
41. Kamenshchikov V.A., Plastinin Yu.A., Nikolaev V.M. etc. Radiation properties of gases at high temperatures. M.: Mashinostroenie. 1971. 440 p. [in Russian]
42. Surzhikov S.T. Database of Atomic Lines for Radiative Gas Dynamics//AIAA Paper 2002-2898. 2002. 48 p.
43. Surzhikov S.T. Optical properties of gases and plasma. М.: MSTU. 2004. 575 p. [in Russian]
44. Cruden B.A., Prabhu D., Martinez R., Le H., Bose D., Grinstead J.H. Absolute Radiation Meas-urement in Venus and Mars Entry Conditions// AIAA 2010-4508. 2010.
45. Brandis A.M., Johnston C.O., Cruden B.A., Prabhu D.K. and Bose D. Validation of High-Speed Earth Atmospheric Entry Radiative Heating from 9.5 to 15.5 km/s// AIAA 2012-2865. 2012.
46. Brandis A.M., Cruden B.A., Prabhu D., Bose D., McGilvray M. and Morgan R.G. Analysis of Air Radiation Measurements Obtained in EAST and X2 Shocktube Facilities// AIAA 2010-4510. 2010.
47. Takayanagi H. and Fujita K. Absolute Radiation Measurements behind Strong Shock Wave in Carbon Dioxide Flow for Mars Aerocaprure Missions// AIAA 2012-2744. 2012.
48. Surzhikov S.T. Spectral Emissivity of Shock Waves in Martian and Titan Atmospheres// AIAA 2010-4527. 32 p.
49. Dikalyuk, A.S., Surzhikov, S.T. Numerical investigation of a model of nonequilibrium radiation behind a shock front in the Martian atmosphere. Fluid Dyn 48, 123–140 (2013).
50. Kozlov P.V., Surzhikov S.T. Nonequilibrium radiation NO in shocked air// AIAA 2017-0157. 16 p.
51. Surzhikov S.T. Comparison of Two Hybrid CR-Models for Prediction of Nonequilibrium Radia-tion from Strong Shock Waves// AIAA 2015-2513. 2015. 41 p.
52. Colonna G., D'Angola A. (eds.) Plasma modeling. Methods and applications. IOP Plasma Phys-ics Series. IOP Publishing, Bristol, UK. 2016.
53. Surzhikov S.T. Computer aerophysics of descent space vehicles. Two-dimensional models. M.: Fizmatlit. 2018. 543 p. [in Russian]
54. Shang J.S., Surzhikov S.T. Plasma Dynamics for Aerospace Engineering. Cambridge University Press. 2018. 387 p.
55. Brandis A. M., Cruden B. A. Shock Tube Radiation Measurements in Nitrogen// AIAA 2018-3447. 2018. 37 p. DOI: 10.2514/6.2018-3437
56. Cruden B.A., Brandis A.V., MacDonald M.E. Characterization of CO Thermochemistry in Inci-dent Shockwave// AIAA 2018-3768. 2018. 22 p.
57. MacDonald M.E., Brandis A.V., Cruden B.A. Temperature and CO Number Density Measure-ments in Shocked CO and CO2 via Tunable Diode Laser Absorption Spectroscopy// AIAA 2018-4067. 2018. 23 p. DOI: 10.2514/6.2018-4067
58. Cruden B.A., Brandis A.M., Johnston C.O. Development of a Radiative Heating Margin Policy for Lunar Return Missions// AIAA 2017-1370. 2017.
59. Shurma M.P., Muffano A., Panesi M., Brandis A.V., Cruden B.A. One-dimensional modeling methodology for shock tubes: Application to the EAST facility// AIAA 2018-4181. 2018. 12 p.
60. Cruden B.A., Bogdanoff D.W. Shock Radiation Tests for Saturn and Uranus Entry Probes// Journal of Spacecraft and Rockets. 2017. Vol.54. No.6. P.1246-1257.
61. Brandis A.M., Cruden B. A. Titan Atmospheric Entry Radiative Heating// AIAA 2017-4534. 2017. 27 p.
62. Brandis A.M., Cruden B. A. Benchmark Shock Tube Experiments of Radiative Heating Relevant to Earth Re-entry// AIAA-2017-1145. 2017. 50 p.
63. Brandis A. M., Johnston C.O., Cruden B.A., Prabhu D.K. Equilibrium Radiative Heating from 9.5 to 15.5  km/s for Earth Atmospheric Entry// Journal of Thermophysics and Heat Transfer. 2016.
64. Brandis A. M., Cruden B.A., Olejniczak J., Grinstead J., Kirk L., Lillard L., Tanno H., Komuro T. Measurement of Ultraviolet Radiative Heating Augmentation in HIEST Reflected Shock Tun-nel// AIAA 2015-2512. 2015. 13 p.
65. Cruden B.A., Brandis A.V. Measurement of radiative nonequilibrium for Air Shocks Between 7 and 9 km/s//Journal Thermophysics and Heat Transfer. November 2019.
66. Losev S.A., Sergievskaya A.L., Kovach E.A., Nagnibeda E.A., Gordiets B.F.Kinetics of chemi-cal reactions in a thermally nonequilibrium gas//Mat. Modeling. 2003. V.15. No. P.72–82. [in Russian]
67. Kuznetsova L.A., Surzhikov S.T. Spectral Radiation of Shock Waves and Radiative Models of Diatomic Molecules// AIAA Pap. 97-2564. 1997. 10 p.
68. Surzhikov S.T., Tenishev V. Kinetics of Air Shock Waves in the Laser Radiation Field// AIAA Paper 99-3549. 1999. 11 p.
69. Whiting E. E., Park C., Liu Y., Arnold J. O., Paterson J. A. NEQAIR96, Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User’s Manual// NASA RP-1389, Dec. 1996.
70. Surzhikov S.T. Computational experiment in the construction of radiation models of radiating gas mechanics. M.: Science.1992. 157 p. [in Russian]
71. Surzhikov S.T. Computational Radiation Models for Low-Temperature Plasma// AIAA 96-2313. 1996. 11 p.
72. Surzhikov S.T. Computing System for Mathematical Simulation of Selective Radiation Transfer // AIAA 2000-2369. 2000. 11 p.
73. Kuznetsova L.A., Surzhikov S.T. Information-computing complex MSRT-RADEN. I. Basic model of absorption coefficients//Mathematical modeling. 1998. V.36. No. 3. C.15-26. [in Rus-sian]
74. Kuznetsova L.A., Surzhikov S.T. Information-computing complex MSRT-RADEN. 2. Models of absorption coefficients//Mathematical modeling. 1998. V.36. No. 4. C. 30-40. [in Russian]
75. Kuznetsova L.A., Surzhikov S.T. Information-computing complex MSRT-RADEN. 3. Data-base//Mathematical modeling. 1998. V.36. No. 5. C. 15-26. [in Russian]
76. Kozlov P.V., Losev S.A., Romanenko Yu.V. Translational nonequilibrium in the front of a shock wave in a mixture of argon and helium // Letters to ZhTF. 2000. V.26. Issue 22. pp.69-75. [in Russian]
77. Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. M.: Science. 1980. 320s. [in Russian]
78. Kuzmenko N.E., Kuznetsova L.A., Kuzyakov Yu.Ya. Franck-Condon factors of diatomic mole-cules. M.: Publishing House of Moscow State University. 1984. 342 p. [in Russian]
79. Kuznetsova L.A., Surzhikov S.T. Radiative heat transfer in narrow bands of rotational lines of diatomic molecules electronic spectra//ASME HTD-Vol. 357-1. 1998. pp. 41-49.
80. Kozlov P.V., Losev S.A., Romanenko Yu.V. The Experimental Study Emission Features of Heated Gas Mixtures CO2/N2 Behind the Shock Wave Front//Preprint No. 33-97, Institute of Mechanics in Moscow State University, 1997. [in Russian]
81. Park C., Howe J.T., Jaffe R.L., Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries// Journal of Thermophysics and Heat Transfer. 1994. Vol.8. No.1. pp.9-23.
82. Biberman L.M., Mnatsakanyan A.Kh., Yakubov I.T. Ionization relaxation behind strong shock waves in gases// UFN. 1970. T.102. Issue 3. pp.431-462. [in Russian]
83. Biberman L.M., Vorobyov V.S., Yakubov I.T. Kinetics of impact-radiation ionization and re-combination// UFN. 1970. T.102. Issue 3. pp.431-462. [in Russian]
84. Biberman L.M., Vorobyov V.S., Yakubov I.T. Low-temperature plasma with non-equilibrium ionization // UFN. 1979. V.128. Issue 2. pp. 233-271. [in Russian]
85. Losev S.A., Makarov V.N., Pogosbekyan M.Ju., Shatalov O.P., NikolskyV.S. Thermochemical Nonequilibrium Kinetic Models in Strong Shock Waves on Air// AIAA 94-1990. 1990. 13 p.
86. Losev S.A. Two-Temperature Chemical Kinetics in Gas Dynamics// AIAA 96-2026. 1996. 10 p.
87. Surzhikov S.T. Prediction of Nonequilibrium Radiation From CO2-N2 Shock Waves// Proc. of the 1st Intern. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. 8-10 Oct., 2003. Lisbon, Portugal. ESA SP-533. P.29-36.
88. Bethe H.A. Intermediate Quantum Mechanics. W.A. Benjamin, Inc. New York − Amsterdam. 1964.
89. Bethe H.A., Sapleter E.E. Quantum Mechanics of One- and Two-Electron Atoms. Springer-Verlag. Berlin − Gottingen −Heidelberg. 1957. 563 p.
90. Grinstead J.H., Wilder M.C., Wright M.J., Bogdanoff D.W. et al. “Shock Radiation Measure-ments for Mars Aerocapture Radiative Heating Analysis// AIAA 07-0924. 2007.
91. Bose D., Wright M.J., Bogdanoff D.W., Raiche G.A., Allen G.A., Jr. Modeling and Experimental Assessment of CN Radiation Behind a Strong Shock Wave// JTHT. 2006. Vol.20. No. 2. pp.220-230.
92. Dikalyuk A.S., Surzhikov S.T., Shatalov O.P., Kozlov P.V., Romanenko Yu.V. Nonequilibrium Radiation behind the Strong Shock Waves in Martian and Titan Atmospheres: Numerical Re-building of Experimental Data// AIAA 2013-2505. 2013.
93. Surzhikov S.T. Radiative-Collisional Models of Non-Equilibrium Aerothermodynamics of Entry Probes//J. of Heat Transfer – ASME Tr.. March 2012. Vol. 134./031002-1. 11 p.
94. Gorelov V.A., Gladyshev M.K., Kireev A.Yu, Yegorov I.V., Plastinin Yu.A, Karabadhzak G.F. Experimental and Numerical Study of Nonequilibrium Ultraviolet NO and N2+ Emission in Shock Layer//JTHT. 1998. Vo.12. No.2. pp.172-179.
95. Gorelov V.A., Kildyushova L.A., Chernyshev V.M. On the measurement of air ionization be-hind strong shock waves // TVT. 1983. V.21. Number 3. pp. 449–453. [in Russian]
96. Gorelov V.A., Kildusheva L.A., Kireev A.Yu. Ionization Particularities Behind Intensive Shock Waves in Air at Velocities of 8÷15 km/s// AIAA 94-2051. 1994. 11 p.
97. Gorelov V.A., Kireev A.Yu., Shilenkov S., Surzhikov S.T. Prediction of Nonequilibrium Ioniza-tion and Emission at Superorbital Flight in Air//AIAA 04-2380. 2004. 11 p.
98. Gorelov V. A., Kireev A. Yu., Shilenkov S. V. Photoionization of air in front of the bow shock near an aircraft at a flight speed of 6-8 km/s//Scientific notes of TsAGI. 2012. T.XLIII. No. 5. S.15-26. [in Russian]
99. Kireev A.Yu., Yumashev V.L. Numerical modeling of a viscous nonequilibrium air flow behind a strong shock wave // Zh. Comput. math. and math.phys. 2000. V.40. No. 10. S. 1563-1570. [in Russian]
100. Gorelov V.A., Gladyshev M.K., Kireev A.Yu., Shilenkov S.V. Non-equilibrium ionization be-hind a strong shock wave in the Martian atmosphere//PMTF. 2000. V.41. No. 6. pp.13-20. [in Russian]
101. Surzhikov, S.T. Numerical Analysis of Shock Layer Ionization during the Entry of the Schiapa-relli Spacecraft into the Martian Atmosphere. Fluid Dyn 55, 364–376 (2020).
102. Surzhikov, S.T. Aerophysics of Flow Past a Blunt Wedge of Finite Dimensions. Fluid Dyn 56, 685–698 (2021).
103. Surzhikov, S.T. Heat Transfer and Ionization in Non-Equilibrium Hypersonic Flow Past a Blunt Plate. Fluid Dyn 56, 870–885 (2021).
104. Surzhikov S.T. Non-equilibrium supersonic flow around a plate at a high angle of attack//MZhG. 2023. No. 1. [in Russian]
105. Whiting E.E., Schadee A., Tatum J.B., Hougen J.T., Nicholls R.W. Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra// J.Mol.Spec., Vol.80, p. 249, 1980
106. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. Experimental study of the radiative characteristics of shock heated air in the ultraviolet and visible regions of the spectrum // MZhG. 2022. №6. [in Russian]
107. Arnold J.O., Nicholls R.W. A shock tube determination of the CN ground stage dissociation en-ergy and the CN violet electronic transition moment//JQSRT. 1973. V.13. pp.115-133.
108. Amiot C. The infrared emission spectrum of NO: Analysis of the v=3 sequence up to v=22// J.Mol.Spec., Vol.94, p.150, 1982
109. Werner H.-J., Kalcher J., Reinsch E.-A. Accurate ab initio calculs of radiative transition proba-bilities between the A3Σ+u, B3Πg,W3Δu,B'3Σu, and C3Πu states of N2// J.Chem.Phys., Vol.81, p.2420, 1984
110. Langhoff, S.R., Bauschlicher, C.W., and Partrige, H. Theoretical study of the N2+ Meinel sys-tem// J.Chem.Phys., Vol.87, pp.4716-4721, 1987
111. Langhoff S.R., Bauschliher C.W. Theoretical study of the first and second negative systems of N2+// J.Chem.Phys., Vol.88, pp.329-336, 1988
112. Langhoff S.R., Bauschlicher C.W., Partridge H. Theoretical study of the NO-system//J. Chem. Phys. 1988. Vol.89. pp.4909-4917.
113. Langhoff S.R., Partridge H., Bauschlicher C.W., Komornicki A. Theoretical study of the NO β-system// J.Chem.Phys. 1991. Vol.94, pp.6638-6643.
114. Laher R.R., Gilmor F.R. Improve Fits for the Vibrational and Rotational Constants of Many Stages of Nitrogen and Oxigen// J.Phys.Chem.Ref. Data. 1991. Vo.20. No.4. P.685-712.
115. Gilmore F.R., Laher R.R., and Espy P.J. Franck-Condon factors, r-centroids, electronic transition moments and Einstein coefficients for many nitrogen and oxygen band systems// J. Phys. Chem. Ref. Data. 1992. Vol.21. pp.1005-1107.
116. Physical and chemical processes in gas dynamics. Computerized directory. In 3 volumes. Vol-ume I. Dynamics of physical and chemical processes in gas and plasma// Ed. G.G. Cherny and S.A. Losev. - M .: Publishing House of Moscow. University. 1995. 350 p.
117. Physical and chemical processes in gas dynamics. Computerized directory. In 3 volumes. Vol-ume II. Physico-chemical kinetics and thermodynamics// Ed. G.G. Cherny and S.A. Losev. - M .: Research Center for Mechanics. 2002. 368 p.
118. Zhdanov V.M., Galkin V.S., Gordeev O.A., Sokolova I.A. Physical and chemical processes in gas dynamics. Computerized directory. In 3 volumes. Volume III. Models of Molecular Transport Processes in Physical and Chemical Gas Dynamics // Ed. G.G. Cherny and S.A. Lo-sev. – M.: Fizmatlit. 2012. 282 p.
119. Millikan R.C., White D.R. Systematic of Vibrational Relaxation//J. of Chemical Physics. 1963. Vol.39. No.12. pp.3209-3212.
120. Losev S.A., Kozlov P.V., Kuznetsova L.A., Makarov V.N., Romanenko Yu.V., Surzhikov S.T., Zalogin G.N. Radiation of mixture CO2-N2-Ar in shock waves: Experiment and modelling. Proc. Of the 3rd European Symposium on Aerothermodynamics for Space Vehicles. 1998. ES-TEC. Noordwijk. ESA SP-426. pp. 437-444.
121. Marrone P.V., Treanor C.E. Chemical Relaxation with Preferential Dissociation from Excited Vibrational Levels// Phys. of Fluids. Vol. 6. No. 9. 1963. pp.1215−1221.
122. Cartwright D. Rate Coefficients and Inelastic Momentum Transfer Cross Sections for Electronic Excitation of N2 by Electrons//J. Appl. Phys. 1978. Vol. 49. No.7. pp. 3855–3862.
123. Teulet P., Sarrette J., Gomes A. Calculation of Electron Impact Inelastic Cross Sections and Rate Coefficients for Diatomic Molecules. Application to Air Molecules// JQSRT. 1999. Vol.62, pp. 549–569.
124. Herzberg G. Molecular Spectra and Molecular Structures. I. Spectra of Diatomic Molecules. 2nd ed., Van Nostrand. Princeton. N.J. 1950.
125. Fraser R.A. A Method of Determining the Electronic Transition Moment for Diatomic Mole-cules//Canad. J. Phys. 1954. Vol.32. pp.515-521.
126. Bethe H.A. Intermediate Quantum Mechanics. W.A. Benjamin, Inc. New York − Amsterdam. 1964.
127. Bethe H.A., Salpeter E.E. Quantum Mechanics of One- and Two-Electron Atoms. Springer-Verlag. Berlin − Gottingen −Heidelberg. 1957. 563 p.
128. Shadee A. The Relation between the Electronic Oscillator Strength and the Wavelength for Dia-tomic Molecules//JQSRT. 1967. Vol.7. P.169.
129. Shadee A. Unique Definitions for the Band Strength and the Electronic-Vibrational Dipole Mo-ment of Diatomic Molecular Radiative Transitions//JQSRT. 1978. Vol.19. P.451.