Особенности процесса энергообмена в кластированном потоке аргона при инициации излучения электронным пучком



Features of the energy exchange process in a clustered argon stream at the initiation of radiation by an electron beam

The problems associated with the formation of an external cluster flow that we discov-ered earlier, which is formed in the external field of a traditional supersonic jet and is called the "cluster wake", are discussed. The reasons for the prolonged anomalous glow of the "cluster wake" are investigated. The results of a spectral study of the induced radi-ation of a supersonic clastered argon flow in the region of particle excitation (on an elec-tron beam) and beyond are presented. Anomalies in the glow of a traditional spindle-shaped jet and heavy clusters are discussed. Possible causes of the observed anomalous phenomena are presented on the basis of the above comparisons of the results obtained. The role of the energy exchange of clusters with the background gas in the afterglow of the "cluster wake" is established. The wavelengths and the corresponding transitions in ArI and ArII, which are responsible for the anomalous emission, are determined. The life-times in the excited state of particles in the central part and on the periphery of the clastered flow are determined.

supersonic jet, gas clusters, condensation process, argon, electron-beam diagnostics, in-tracluster energy exchange, «cluster wake»

Кирилл Дубровин, Александр Евгеньевич Зарвин, Юрий Евгеньевич Горбачев, Александр Сергеевич Яскин, Валерий Владимирович Каляда

Том 23, выпуск 4, 2022 год



Обсуждены проблемы, связанные с образованием обнаруженного нами ранее внешнего кластерного потока, формирующегося во внешнем поле традиционной сверхзвуковой струи и названного «кластерным следом». Исследованы причины длительного аномального свечения «кластерного следа». Представлены результа-ты спектрального исследования индуцированного излучения сверхзвукового кла-стированного потока аргона в области возбуждении частиц (на электронном пучке) и за её пределами. Обсуждены аномалии в свечении традиционной веретенообраз-ной струи и потока тяжелых кластеров. Представлены возможные причины наблю-даемых аномальных явлений на основе приведенных сравнений полученных ре-зультатов. Установлена роль энергообмена кластеров с фоновым газом в послесве-чении «кластерного следа». Определены длины волн и соответствующие переходы в ArI и ArII, обуславливающие аномальное свечение. Определены времена жизни в возбужденном состоянии частиц в центральной части и на периферии кластирован-ного потока.

сверхзвуковая струя, газовые кластеры, конденсация, аргон, электронно-пучковая диагностика, внутрикластерный энергообмен, «кластерный след»

Кирилл Дубровин, Александр Евгеньевич Зарвин, Юрий Евгеньевич Горбачев, Александр Сергеевич Яскин, Валерий Владимирович Каляда

Том 23, выпуск 4, 2022 год



1. Ashkenas H.Z., Sherman F.S. The structure and utilization of supersonic free jets in low densi-ty wind tunnels Rarefied Gas Dynamics (Proceedings of the 4th RGD Symposium, Academic Press, New York). 1966. Vol.2, 84.
2. Дулов В.Г., Лукьянов Г.А. Газодинамика процессов истечения. Изд-во «Наука», Сибир-ское отделение. Новосибирск, 1984. 235 с.
3. Кисляков Н.И., Ребров А.К., Шарафутдинов Р.Г. О структуре высоконапорных струй низкой плотности за сверхзвуковым соплом. ПМТФ. 1975. № 2. С.42-52.
Kislyakov N.I., Rebrov A.K., Sharafutdinov R.G. Structure of high-pressure low-density jets beyond a supersonic nozzle. J. Appl. Mech. Tech. Phys. 1975. Vol.16(2) P.187–195, https://doi.org/10.1007/BF00858912
4. Герасимов Ю.И., Ярыгин В.Н. Истечение струй идеального и реальных газов из осесим-метричных сопел. Вопросы подобия 2. Истечение в затопленное пространство/ Физико-химическая кинетика в газовой динамике Электронный журнал. 2012. Т.13, вып. 2. С.1-26. http://chemphys.edu.ru/issues/2012-13-2/articles/315/
Jet expansion of ideal and real gases from axisymmetric nozzles. Similarity matters. 2. Outflow of jets into submerged space
5. Carlson D.J., Lewis C.H. Normal shock location in underexpanded gas and gas-particle jets. AIAA Journal. 1964. Vol.2(4). P.776-777. DOI:10.2514/3.2409
6. Chen G., Boldarev A. S., Geng X., Li X., Cao Y., Wang L., Kim D. E. The radial dimension of a supersonic jet expansion from conical nozzle. AIP Advances. 2016. vol.6. 115015. DOI:10.1063/1.4967782
7. Norman M.L., Smarr L., Winkler K.H.A., Smith M.D. Structure and Dynamics of Supersonic Jets. Astronomy and Astrophysics. 1982. Vol.113. P.285-302.
8. Belan M., De Ponte S., Tordella D. Determination of density and concentration from fluores-cent images of a gas flow. Exp. Fluids. 2008. Vol.45, P.501-511. DOI 10.1007/s00348-008-0493-5
9. Belan M., De Ponte S., Tordella D., Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet. Physical Review E, 2010. Vol.82, 026303.1-10. DOI: https://doi.org/10.1103/PhysRevE.82.026303
10. Franquet E., Perrier V., Gibout S., Bruel P. Free underexpanded jets in a quiescent medium: A review. Progress in Aerospace Sciences. 2015. Vol.77. P.25-53. DOI:10.1016/J.PAEROSCI.2015.06.006
11. Абрамович Г.Н. Прикладная газовая динамика. M.: Наука, 1976. 824 с.
12. Hagena O.F. Nucleation and Growth of Clusters in Expanding Nozzle Flows. Surf. Sci. 1981.Vol.106. P.101–116.
13. Hagena O.F., Obert W. Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas. The Journal of Chemical Physics. 1972. Vol.56 (5). P.1793-1802. doi:10.1063/1.1677455
14. Obert W. Properties of cluster beams formed with supersonic nozzles. Rarefied Gas Dynamics (Paris: Commissariat a L`Energie Atomique). 1979. Vol.2. P.1181-90.
15. Schütte S., Buck U. Strong fragmentation of large rare gas clusters by high energy electron im-pact. Int. J. Mass Spectrometry. 2002. Vol.220 (2). P.183-192. https://doi.org/10.1016/S1387-3806(02)00670-X
16. Van der Burgt P.J. M., McConkey J.W. J. Detection of neutral metastable fragments from elec-tron-impact on argon clusters. Chem. Phys. 1995. Vol.102. 8414-23. https://doi.org/10.1063/1.468832
17. Bobbert C., Schütte S., Steinbach C., Buck U. Fragmentation and reliable size distributions of large ammonia and water clusters Eur. Phys. J.D. 2002. Vol.19. P.183-192. DOI:10.1140/EPJD/E20020070
18. Смирнов Б. А. Генерация кластерных пучков. УФН, 2003, Т.173, № 6. С. 609-648. DOI: 10.3367/UFNr.0173.200306b.0609
19. Kappes M, Leutwyler S "Molecular beams of clusters", in Atomic and Molecular Beam Meth-ods Vol. 1 (Ed. G Scoles) (New York:Oxford Univ. Press, 1988) p. 380
20. Haberland H (Ed.) Clusters of Atoms and Molecules: Theory, Experiment, and Clysters of At-oms (Springer Series in Chemical Physics, Vol. 52) (Heidelberg: Springer-Verlag, 1994) https://doi.org/10.1007/978-3-642-84329-7
21. Kondow T, Kaya K, Terasaki A (Eds) Structure and Dynamics of Clusters (Frontiers Science Ser., Vol. 16) (Tokyo: Univ. Acad. Press, 1996)
22. Макаров Г.Н. Кластерная температура. Методы её измерения и стабилизации. Успехи физических наук. 2008. Т.178. №4. С.337-376. DOI: 10.3367/UFNr.0178.200804a.0337
23. Harnes J., Winkler M., Lindblad A., L J Sæthre, Børve K J. Size of free neutral CO2 clusters from carbon 1s ionization energies J. Chem. Phys. 2011. Vol.115 (38), P.10408-15. DOI: 10.1021/jp206329m
24. Skovorodko P. A. About the Nature of the Recirculation Zone Behind a Mach Disk in an Un-derexpanded Jet AIP Conference Proceedings. 2011. Vol.1333, P. 601-606. https://doi.org/10.1063/1.3562713
25. Зарвин А.Е., Яскин А. С., Каляда В.В., Ездин Б.С. О структуре сверхзвуковой струи в условиях развитой конденсации. ПЖТФ. 2015. Т.41. Вып. 22. С. 74-81.
26. Зарвин А.Е., Яскин А.С., Каляда В.В. Влияние конденсации на размеры сильно недорас-ширенных струй при истечении в разреженное затопленное пространство. ПМТФ. 2018. Т.59. № 1. С.99-106. DOI: 10.15372/PMTF20180111;
27. Дубровин К.А., Зарвин А.Е., Каляда В.В., Художитков В.Э., Яскин А.С. Исследование структуры потока на малогабаритном газодинамическом комплексе: Идентификация вторичного потока при истечении кластированной сверхзвуковой струи в разреженное пространство. ПМТФ. 2018. Т.59. № 5. С.48-58. 10.15372/PMTF20180506
28. Дубровин К.А., Зарвин А.Е., Каляда В.В., Яскин А.С. Причины свечения аномального вторичного потока в сверхзвуковых кластированных струях, возбужденных высоковоль-тным электронным пучком. Письма в ЖТФ. 2020. Т.46. Вып. 7. С.32-35. DOI: 10.21883/PJTF.2020.07.49217.18011.
29. Дубровин К.А., Зарвин А.Е., Яскин А.С., Каляда В.В. Влияние конденсации на размеры сверхзвуковых потоков. Письма в ЖТФ, 2022, том 48, вып. 12, с. 36-39. DOI: 10.21883/PJTF.2022.12.52677.19215
30. Dubrovin K.A., Zarvin A.E., Rebrov A.K., Konstantinov S. E, Borynyak K, I, Yaskin A, S., Kalyada V V. Radiation of argon clustered flow particles outside the exciting electron beam. J. Phys.: Conf. Ser. 2021. Vol.2119. 012118. DOI:10.1088/1742-6596/2119/1/012118
31. Zarvin A.E., Kalyada V.V., Madirbaev V.Zh.,Korobeishchikov N., Khodakov M., Yaskin A. S., Khudozhitkov V. E., Gimelshein S. Condensable Supersonic Jet Facility for Analyses of Tran-sient Low-Temperature Gas Kinetics and Plasma Chemistry of Hydrocarbons. IEEE Trans. Pl. Sci. 2017. Vol.45. P.819–27. DOI:10.1109/TPS.2017.2682901
32. Gochberg A. Electron beam fluorescence methods in hypersonic aerothermodynamics. Prog. Aerospace Sci. 1997. Vol.33, P.431-480. DOI:10.1016/S0376-0421(97)00002-X
33. Mohamed A.K., Bonnet J., Larigaldie S., Pot T., Soutadé J., Diop B. Electron Beam Fluores-cence in Hypersonic. FacilitiesAerospace Lab. 2009 Vol.1, AL01-08. Al1-08.pdf (onera.fr)
34. Kazakov V.V., Kazakov V.G., Kovalev V.S., Meshkov O.I., Yatsenko A.S. Electronic struc-ture of atoms: atomic spectroscopy information system. Physica Scripta. 2017. 92: 105002. DOI: 10.1088/1402-4896/aa822e
35. Зарвин А., Мадирбаев В., Дубровин К., Яскин А. Анализ причин инверсной заселенности уровней атомарного аргона в конденсирующихся сверхзвуковых потоках смесей Физико-химическая кинетика в газовой динамике. 2022. Т.23, вып. 3. http://chemphys.edu.ru/issues/2022-23-3/articles/994/
DOI: http://doi.org/10.33257/PhChGD.23.3.994
36. J. A. Smith and J. F. Driscoll. The electron-beam fluorescence technique for measurements in hypersonic turbulent flows // J. Fluid Mech. 1975. V. 72. Part 4. P. 695-719.