Experimental Studies of Shock Wave Formation in a Diaphragmless Shock Tube

Shockwave processes in a shock tube containing a high-speed low-inertia electromagnetic pneumatic valve have been experimentally investigated. Graphs of pressure sensor signals in the shock tube path are given. The dependence of the valve opening time on the pressure in the blocks of high and low gas density is shown. A physical simulation of the valve operation at the initial moments of its opening with the formation of a shock wave is carried out.

shock wave, electromagnetic valve, experiment

Volume 23, issue 3, 2022 year

Экспериментальные исследования формирования ударной волны в бездиафрагменной ударной трубе

Экспериментально исследованы ударно-волновые процессы в ударной трубе, содержащей быстродействующий малоинерционный электромагнитный пневматический клапан. Приведены графики сигналов датчиков давления в тракте ударной трубы. Показана зависимость времени раскрытия клапана от давлений в камерах высокой и низкой плотности газа. Поведено физическое моделирование работы клапана в начальные моменты его вскрытия с образованием ударной волны.

ударная волна, электромагнитный клапан, эксперимент

Volume 23, issue 3, 2022 year

Isakov S.N., Isakov I.N., Yurkin S.V. RF Patent No. 2066656 "Launcher".
2. Patent US 2013/0215927 Device for measuring a heat flow. August 22, 2013.
3. Nosova E.V., Piskunov V.A., Nosov V.V. Calculation of the strength of the shut-off cap of a high-speed pneumatic valve // Modern mechanical engineering. Science and education. 2013. № 3.
4. Nishiyama M., Taguchi M. and Kashitani M. Fundamental Study on Operational Parameters of Diaphragmless Shock Tube // MATEC Web of Conferences 151, 02004 (2018) ACMAE 2017. https://doi.org/10.1051/matecconf/201815102004.
5. Raiser Yu.P. Introduction to hydrogas dynamics and shock wave theory for physicists.
Dolgoprudny: Intellect, 2011. 432 p. ISBN 978-5-91559-084-6.
6. Zeldovich Ya.B., Raiser Yu.P. Physics of shock waves and high—temperature hydrodynamic phenomena. - 3rd ed., corrected. — M.: FIZMATLIT, 2008. — 656 p. — ISBN 978-5-9221-0938-3.
7. Bazhenova T.V., Gvozdeva L.G. Unsteady interactions of shock waves. M: Science. 1977. 274 p.
8. Panasenko A. Calculation of shock wave formation in a shock tube with a different method of initial gas outflow//Physical-Chemical Kinetics in Gas Dynamics. 2022. V.23, iss. 1. http://chemphys.edu.ru/issues/2022-23-1/articles/981/.
9. Surzhikov S. Calculated initial data for solving test problems in the working area of the hypersonic shock wind tunnel HAST of the RadGD Laboratory of the IPMech RAS//Physical-Chemical Kinetics in Gas Dynamics. 2021. V.22, iss. 1. http://chemphys.edu.ru/issues/2021-22-1/articles/930/.
10. Panasenko A.V. et al. Increasing hypersonic aerodynamic shock tube working time duration
2020 IOP Conf. Ser.: Mater. Sci. Eng. 927 012082.