Thermal state of uncooled quartz discharge channel of powerful high-frequency induction plasmatron




This paper studies the thermal state of VGU-4 HF-plasmatron uncooled quartz discharge channel at HF-generator anode power values of 45 and 70 kW for three working gases (air, carbon dioxide and pure nitrogen). Experiments were carried out to obtain temperature fields of discharge channel at different working gas mass flow rate. Maximum wall temperatures were observed in carbon dioxide plasma. Inductively coupled plasma flow numerical modeling was made on the basis of Navier-Stokes and simplified Maxwell equations for the experimental conditions. It was shown that the influence of different quartz wall temperature boundary conditions on the calculated air plasma flow parameters at the channel exit section is negligible. The calculation results of temperature fields for nitrogen and air plasma were close, which is in accordance with the experiment. Calculated stream function isolines and isotherms are in accordance with the schematic view proposed by Yu.P. Raizer.

HF-plasmatron, induction discharge, quartz discharge channel

Тепловое состояние неохлаждаемого кварцевого разрядного канала мощного высокочастотного индукционного плазмотрона

Исследовано тепловое состояние неохлаждаемого кварцевого разрядного канала ВЧ-плазмотрона ВГУ-4 при мощности ВЧ-генератора по анодному питанию 45 и 70 кВт для трех рабочих газов (воздух, углекислый газ, азот). Проведены эксперименты с целью получения полей температур разрядного канала в зависимости от массового расхода рабочего газа. Максимальная температура стенки разрядного канала наблюдалась в плазме углекислого газа. На основе уравнений Навье-Стокса и упрощенных уравнений Максвелла проведено численное моделирование течения индукционной плазмы для условий экспериментов. Показано, что влияние различных вариантов задания температурных граничных условий для кварцевой стенки на расчетные параметры потока воздушной плазмы у выходного сечения канала незначительно. Результаты расчета температурных полей для плазмы воздуха и азота оказались близкими, что согласуется с экспериментом. Расчетные изолинии функции тока и изотермы соответствуют теоретически предсказанным Ю.П. Райзером.

ВЧ-плазмотрон, индукционный разряд, кварцевый разрядный канал


1. Babat, G.I. Bezelektrodnyj razryad i nekotorye smezhnye problemy (Electrodeless discharge and some allied problems). Vestnik elektropromyshlennosti. No. 3., 1942, pp. 47-51 [in Russian].
2. Babat, G.I. Electrodeless discharges and some allied problems. Journal of the Institution of Electrical Engineers. Part III: Radio and Communication Engineering, Institution of Engineering and Technology (IET). Vol. 94, No. 27, 1947, pp. 27-37.
3. Reed, T.B. Induction‐coupled plasma torch. Journal of Applied Physics. Vol. 32. No. 5, 1961, pp. 821-824. https://doi.org/10.1063/1.1736112
4. Reed, T.B. Heat‐Transfer Intensity from Induction Plasma Flames and Oxy‐Hydrogen Flames. Journal of Applied Physics. Vol. 34, No. 8., 1963, pp. 2266-2269. https://doi.org/10.1063/1.1702726
5. Raizer, Yu. P. High-Frequency High-Pressure Induction Discharge and the Electrodeless Plasmotron. Soviet Physics Uspekhi. Vol. 12, No. 6, 1970, pp. 777–791
6. Kononov, S.V., Yakushin, M.I. Heat transfer in a high-frequency electrodeless plasmatron operating in air. Journal of Applied Mechanics and Technical Physics. Vol. 7, No. 6., 1966, pp. 45-46. https://doi.org/10.1007/BF00914332
7. Yakushin, M.I. Obtaining high gas temperatures in an electrodeless high-frequency discharge. Journal of Applied Mechanics and Technical Physics. Vol. 10, No. 3, 1969, pp. 470-478. https://doi.org/10.1007/BF00916183
8. Gordeev, A.N., Kolesnikov, A.F., Yakushin, M.I. Induction plasma application to Buran's heat protection tiles ground tests. SAMPE Journal. Vol 28. No. 3. 1992.
9. Gülhan, A., Vennemann, D., Yakushin, M., Zhestkov, B. Comparative oxidation tests on reference material in two induction heated facilities. Acta astronautica. Vol. 38, No. 4-8, 1996, pp. 501-509. https://doi.org/10.1016/0094-5765(96)00029-X
10. Kolesnikov, A.F., Gordeev, A.N., Vasilevskii, S.A. Capabilities of RF-Plasmatron IPG-4 for re-entry simulation. Journal of technical physics. Vol. 50, No. 3, 2009, pp. 181-198.
11. Gordeev, A.N. Overview of characteristics and experiments in IPM plasmatrons. VKI, RTO AVT. 1999.
12. Gordeev, A.N., Pershin, I.S., Yakushin, M.I. Heat Regimes of Quartz Discharge Channel of Powerful Induction Plasmotron IPG-3-200. Environmental Testing for Space Programms. Vol. 408, 1997, p. 189.
13. Touloukian, Y.S., DeWitt, D.P. Thermophysical properties of matter. The TPRC data series. Vol. 8. Thermal radiative properties-nonmetallic solids. 1972.
14. Baronets, P.N., Bykova, N.G., Gordeev, A.N., Pershin, I.S., Yakushin, M.I. Experimental characterization of induction plasmatron for simulation of entry into Martian atmosphere. Aerothermodynamics for space vehicles. Vol. 426, 1999, p. 421.
15. Surzhikov, S.T. Teplovoe izluchenie gazov i plazmy (Thermal radiation of gases and plasma). Publishing House of the BMSTU. 2004, 543 p. [in Russian]
16. Vanden Abeele D., Vasil'evskii, S.A., Kolesnikov, A.F., Degrez, G., Bottin, B. Code-to-code validation of inductive plasma computations. Progress in Plasma Processing of Materials. Eds. P.Fauchais and J.Amouroux, Begell House, N.Y., 1999, pp. 245-250.
17. Rini, P., Vasil'evskii, S.A., Kolesnikov, A.F., Chazot, O., Degrez, G. Inductively coupled CO2 plasma flows: code-to-code comparison. 4-th International Symposium Atmospheric Reentry Vehicles and Systems. 21-23 March, 2005, Arcachon, France. Published also in VKI RP 2005-57.
18. Utyuzhnikov, S.V., Konyukhov, A.F., Vasil'evskii, S.A., Rudenko, D.V., Kolesnikov, A.F., Chazot, O. Simulation of sub- and supersonic flows in inductive plasmatrons. AIAA Journal. Vol. 42, No. 9, 2004. pp.1871-1877. https://doi.org/10.2514/1.1195
19. Sakharov, V.I., Kolesnikov, A.F., Gordeev, A.N., Verant, J.-L. CFD modeling of thermally and chemically nonequilibrium flows in discharge channel in subsonic plasmatron jets of the flat-face model. Proceedings of the 6th European Symposium on Aerothermodynamics for Space Vehicles. November 2008. Versailles, France. ESA SP-659.
20. Bykova, N.G., Vasil’evskii, S.A., Kolesnikov, A.F. The effect of radiation on the spatial distribution of the temperature of subsonic flows of induction plasma. High Temperature. Vol. 42, No. 1, 2004, pp. 12-19. https://doi.org/10.1023/B:HITE.0000020086.83847.cd
21. Boulos, M.I. Flow and temperature fields in the fire-ball of an inductively coupled plasma. IEEE Trans. on Plasma Sc. PS-4, 1976, Vol. 1, p. 28.
22. Vasil'evskii, S.A., Kolesnikov, A.F., Kubarev, S.N., Makarov, B.P., Yakushin, M.I. Nonequilibrium flow and heat transfer in induction plasma generators. Heat Transfer Research. Vol.25, No.3, 1993, p. 365.
23. Vasil'evskii, S.A., Kolesnikov, A.F., Yakushin, M.I. Mathematical models for plasma and gas flows in induction plasmatrons. Molecular Physics and Hypersonic Flows. Edited by M. Capitelli. NATO ASI Series, Kluwer, Dordrecht. 1996, p. 495.
24. Kolesnikov, A.F., Vasil’evskii, S.A. Some problems of numerical simulation of discharge electrodynamics in induction plasmatron. Proceedings of 15th IMACS World Congress, Berlin, August 1997. Vol.3, Computational Physics, Chemistry and Biology. Ed. by A. Sydov. 1997, p. 175.
25. Vanden Abeele, D., Degrez, G. Iterative methods for inductive plasma computations. AIAA Paper 98 - 2825. 1998.
26. Vasilevskii S.A., Kolesnikov A.F., Bryzgalov A.I., Yakush S.E. Computation of inductively coupled air plasma flow in the torches. Journal of Physics: Conference Series, Vol. 1009, 2018. p. 012027.
27. Vanden Abeele D., Vasil'evskii, S.A., Kolesnikov, A.F., Degrez, G., Bottin, B. Code-to-code validation of inductive plasma computations. Progress in Plasma Processing of Materials. Eds. P.Fauchais and J.Amouroux, Begell House, N.Y., 1999. pp. 245-250
28. Sokolova I.A., Vasil'evskii S.A., Andriatis A.V. Computation of transport coefficients for multicomponent gas and plasma. Physical-Chemical Kinetics in Gas Dynamics. 2005. Vol. 3. https://chemphys.edu.ru/media/published/2005-06-12-001.pdf [in Russian]
29. Gurvich at al. Thermodynamic properties of individual substances. In 4 volumes. Ed. Glushko V.P. Moscow, Nauka Publ. 1979-1982 [in Russian].
30. Kolesnikov A.F, Tirskiy G.A. Equations of hydrodynamics for partially ionized multicomponent mixtures of gases, employing higher approximations of transport transfer coefficients. Fluid Mechanics - Soviet Research, Scripta Technica Publ., Vol. 13, No. 4, 1984, pp. 70–97.
31. Vasil'evskii, S.A., Sokolova, I.A., and Tirskii, G.A. Exact equations and transport coefficients for a multicomponent gas mixture with a partially ionized plasma. Journal of Applied Mechanics and Technical Physics. Vol. 25, No. 4, 1984. pp. 510-519.
32. Vasil'evskii, S.A., Sokolova, I.A., and Tirskii, G.A. Definition and computation of effective transport coefficients for chemical-equilibrium flows of partially dissociated and ionized gas mixtures. Journal of Applied Mechanics and Technical Physics. Vol. 27, No. 1, 1986, pp. 61-71.
33. Devoto, R.S. Transport properties of ionized monoatomic gases. Physics of Fluids. v.9, N.6, 1966, pp.1230-1240.
34. Sokolova, I.A. Computer library of transport properties for atmosphere gases and plasma. Mathematical Modeling. Vol. 10, No. 2, 1998, pp. 25-40 (translated from Russian)
35. Sokolova, I.A. Modeling the molecular transfer for multicomponent gases and plasmas. Thesis. Moscow, 1992, 230 p. [in Russian].
36. Patankar, S.V., Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer. Vol. 15, 1972, p. 1787.
37. Patankar, S. Numerical heat transfer and fluid flow. Hemisphere Publishing Corp. N.Y. 1980.
38. Vasil'evskii, S.A., Kolesnikov, A.F. Numerical Simulation of Equilibrium Induction Plasma Flows in a Cylindrical Plasmatron Channel. Fluid Dynamics. Vol. 35, No. 5, 2000, pp. 769-777. https://doi.org/10.1023/A:1026659419493