The Effect of Angle-of-Attack on Heat Transfer Characteristics of a Single Drop-Shaped Tube




An experimental and numerical investigation has been conducted to clarify the effect of angle of attack on heat transfer characteristics around a single drop-shaped tube. The Reynolds number for the flow was varied from 21.8 x103 to 42.3 x103. Twelve flow an-gles of attack (θ=0°~50° and 130°~180°) were considered. The results of the drop-shaped tube were compared with those of a circular tube having the same equivalent diameter. Three methods of thermal evaluation criteria were discussed. Correlations for the average Nusselt number and the effectiveness for the drop-shaped tube in terms of Reynolds number, Prandtl number, and the angle of attack were obtained. The results indicated that the drop-shaped tube at θ=50° enhances the heat transfer considerably. The best effec-tiveness values were achieved at θ= 0°, and 180°, which were about 8.16–8.67, and 6.43–8.08 times, respectively, greater than those obtained for the circular tube. The highest val-ues of the area goodness factor were occurred at θ = 170°, which were higher than those obtained for the circular tube by about 437–677%. In addition, the drop-shaped tube con-tributes greatly to energy conservation.

Drop-shaped tube, circular tube, angle of attack, heat transfer coefficient, Nusselt number, effectiveness, efficiency, area goodness factor, CFD.


Volume 22, issue 5, 2021 year


Влияние угла атаки на характеристики теплообмена при обтекании одиночной каплевидной трубы

В данной работе проводится экспериментальное и численное исследование тепло-обмена одиночных труб круглой и каплевидной формы. Работа выполнена в диапа-зоне чисел Рейнольдса Re = (21,8 ~ 42,3)  103 и для двенадцати углов атаки капле-видной трубы (θ = 0° ~ 180°). Представлено распределение локального коэффициента теплоотдачи на поверхности трубы. Представлены три метода для оценки тепловых характеристик каплевидной трубы. Результаты настоящего исследования показыва-ют, что каплевидная труба при θ = 50° значительно улучшает теплоотдачу. Наилуч-шие значения теплогидродинамической эффективности были достигнуты при θ = 0° и 180° (примерно в 8,16–8,67 и 6,43–8,08 раз, соответственно, больше, чем для круглой трубы). Наибольшие значения компактности были получены при θ = 170° (выше, чем полученные для круглой трубы примерно на 437–677%). Получены уравнения для расчета среднего числа Нуссельта и теплогидродинамической эф-фективности, для каплевидных труб, в зависимости от чисел Рейнольдса и угла атаки.

каплевидная труба, круглая труба, угол атаки, коэффициент теплоотдачи, число Нуссельта, эффективность, компактность, численное исследование.


Volume 22, issue 5, 2021 year




1. Wu F., Zhang J., Ma X., Zhou W., “Numerical simulation of gas-solid flow in a novel spouted bed: Influence of row number of longitudinal vortex generators,” Adv Powder Technol., Vol. 29, 2018, Pp.1848–58.
2. Chamoli S., Lu R., Xu D., Yu P., “Thermal performance improvement of a solar air heater fit-ted with winglet vortex generators,” Sol Energy., Vol. 159, 2018, Pp. 966–83.
3. Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C., “Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators,” Energy Convers Manag, 2010, Vol. 51, Pp. 1242–9.
4. Samadifar M., Toghraie D., “Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators,” Appl Therm Eng., Vol. 133, 2018, Pp. 671–81.
5. Li Z., Davidson J.H., Mantell S.C., “Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow,” J Heat Transf., 2006, 128:564.
6. Migaj, V.K. Modeling heat exchange power equipment / V.K. Migaj. – L.: Energoatomizdat, 1987. – 260 s.p.
7. Migaj, V.K. Improving the efficiency of modern heat exchangers/ V.K. Migaj. – L.: Ener-goatomizdat, 1987. – 260 s.
8. Dhiman A., Ghosh R., “Computer simulation of momentum and heat transfer across an ex-panded trapezoidal bluff body,” Int. J. of Heat and Mass Transfer., Vol. 59, 2013, Pp. 338–352.
9. Guan-min Z. et al., “Flow and heat transfer characteristics around egg-shaped tube,” Int. J. Heat Mass Transf., Vol. 27, 2015, Pp. 76-84.
10. Chamoli S., Tang T., Yu P., Lu Ruixin. “Effect of shape modification on heat transfer and drag for fluid flow past a cam-shaped cylinder,” Int. J. Heat Mass Transf, Vol. 131, 2019, 1147–1163.
11. Antuf'ev, V. M., Beleckij, G. S. Teplootdacha i ajerodinamicheskie soprotivlenija trubchatyh poverhnostej v poperechnom potoke (Heat transfer and aerodynamic drag of tubular surfaces in cross-flow), M. – L.: Mashgiz, 1948, 119 p.
12. Antuf'ev, V. M., Jeffektivnost' razlichnyh form konvektivnyh poverhnostej nagreva (Efficiency of various forms of convective heating surfaces), M. ‒ L.: Jenergija, 1966, 184 p.
13. Kjejs, V. M., London, A. L., Kompaktnye teploobmenniki (Compact heat exchangers), M.: Gosjenergoizdat, 1962, 160 p.
14. Brauer H. Mitt. Verein Grosskesselbesitzer [Текст] / H.Brauer // – 1961. – №73.- Р. 260-276 .
15. Sayed A.S.et al., “Parametric study of air cooling process via water cooled bundle of wing-shaped tubes,” EIJST, 2012, 15:3.
16. Deeb R., Sidenkov D.V., “Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle,” IOP Conf. Series: Journal of Physics, 2019. DOI: 10.1088/1742-6596/1359/1/012135.
17. Deeb R., Sidenkov D.V., “Investigation of Flow Characteristics for Drop-shaped Tubes Bundle Using Ansys Package,” 2020 V International Conference on Information Technologies in Engineering Education (Inforino). Moscow, Russia, 2020. DOI: 10.1109/Inforino48376.2020.9111775.
18. Deeb R.; Kolotvin A.V., “Numerical investigation of heat transfer and hydrodynamics for in-line drop-shaped tubes bundle,” Vestnik Trudy Akademenergo. Vol. 60. Iss. 3. 2020.
19. Deeb R., Sidenkov D.V., “Calculation of radiation heat transfer in staggered drop-shaped tubes bundle,” IOP Conf. Series: Journal of Physics, 2019. DOI: 10.1088/1742-6596/1675/1/012017.
20. Deeb R., Sidenkov D.V., “Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle,” IOP Conf. Series: Journal of Physics, 2020. DOI: 10.1088/1742-6596/1359/1/012135.
21. Deeb R., Sidenkov D.V., “Numerical modelling of heat transfer and hydrodynamics for drop-shaped tubes bundle,” IOP Conf. Series: Journal of Physics, 2020. DOI: 10.1088/1742-6596/1683/4/042082.
22. Deeb, R., “Chislennoe issledovanie harakteristik teploobmena i gidravlicheskogo soprotivlenija shahmatnyh puchkov sdvoennyh trub krugloj i kaplevidnoj formy,” Vestnik Teplovye processy v tehnike, Vol. 12, No. 10, 2020.
23. Deeb R., Sidenkov D.V., “Chislennoe issledovanie teploobmena i ajerodinamiki odinochnyh trub kaplevidnoj formy,” Vestnik Mezhdunarodnoj akademii holoda, Vol. 76, No. 3, 2020.
24. Deeb R. Experimental and Numerical Investigation of The Effects of Angle-of-Attack on Air Flow Characteristics for Single Drop-Shaped Tube//Physical-Chemical Kinetics in Gas Dynamics. 2021. V.22, iss. 2.
25. Gomaa A., LeFeuvre R., Underwood C., Bond T., “Numerical analysis of developing laminar flow and heat transfer characteristics through corrugated wall channels,” IMechE 6th UK National Conference on Heat Transfer, UK, 1999, pp 205–214.
26. Webb R.L., “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” “Int. J. of Heat and Mass Transfer, Vol. 24, 1981, 715-726. https://doi.org/10.1016/0017-9310(81)90015-6
27. W.M. Yan, P.J. Sheen, “Heat transfer and friction characteristics of fin-and-tube heat exchangers,” Int. J. Heat Mass Transfer, Vol. 43, 2000, 1651–1659.
28. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0. 2015.
29. Zhukaukas A., Heat transfer from tubes in cross-flow. Heat Transfer Engineering, Vol. 8, 1972, Pp. 93-160.