Diffusion coefficients of electronically excited molecules
The work is devoted to the study of the influence of electronic excitation of molecules on their diffusion coefficients. Based on the electrical properties of several molecules (O2, OH, CO, N2, H2O, and HO2) in various electronic states known from literature and obtained by the authors using quantum chemical calculations, the binary diffusion coef-ficients on the main components of atmospheric air (N2, O2, H2O, and Ar) were estimated over a wide temperature range. It is shown that the diffusion coefficients of electroni-cally excited molecules can differ significantly from the diffusion coefficients of these molecules in the ground electronic state, especially for high excitation energies, as well as in the case of diffusion of a polar molecule in a polar buffer gas.
Работа посвящена исследованию влияния электронного возбуждения молекул на их коэффициенты диффузии. На основе известных и полученных авторами методами квантовой химии электрических свойств ряда молекул (O2, OH, CO, N2, H2O и HO2) в различных электронных состояниях рассчитаны бинарные коэффициенты диффу-зии на основных компонентах атмосферного воздуха (N2, O2, H2O и Ar) в широком диапазоне температур. Показано, что коэффициенты диффузии электронно-возбужденных молекул могут существенно отличаться от коэффициентов диффу-зии этих молекул в основном электронном состоянии, особенно для больших энер-гий возбуждения, а также в случае диффузии полярной молекулы в полярном бу-ферном газе.
1. Adamovich I.V., Macheret S.O., Rich J.W. Spatial nonhomogeneity effects in nonequilibrium vibrational kinetics. // Chem. Phys. 1994. Vol. 182. pp. 167–183. 2. Galkin V.S., Makashev N.K., Rastigeev E.A. Estimation of the effect of vibrational excitation of diatomic molecules on their diffusional transport and dissociation in a boundary layer // Flu-id Dyn. 1996. Vol. 31. pp. 144–155. 3. Kustova E.V., Nagnibeda E.A. Transport properties of a reacting gas mixture with strong vibra-tional and chemical nonequilibrium // Chem. Phys. 1998. Vol. 233. pp. 57–75. 4. Armenise I., Barbato M., Capitelli M., Kustova E. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers // J. Thermophys. Heat Transfer. 2006. Vol. 20. pp. 465–476. 5. Kremer G.M., Kunova O.V., Kustova E.V., Oblapenko G.P. The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases // Physica A. 2018. Vol. 490. pp. 92–113. 6. Campbell L., Brunger M.J. Modelling of plasma processes in cometary and planetary atmos-pheres // Plasma Sources Sci. Technol. 2013. Vol. 22. p. 013002(34pp). 7. Capitelli M., Armenise I., Bisceglie E., Bruno D., Celiberto R., Colonna G., D'Ammando G., Pascale O.D., Esposito F., Gorse C., Laporta V., Laricchiuta A. Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: A state-to-state approach // Plasma Chem. Plasma Process. 2012. Vol. 32. pp. 427–450. 8. Azyazov V.N., Torbin A.P., Pershin A.A., Mikheyev P.A., Heaven M.C. Kinetics of oxygen species in an electrically driven singlet oxygen generator // Chem. Phys. 2015. Vol. 463, pp. 65–69. 9. Tropina A.A., New-Tolley M.R., Shneider M.N. Modeling of laser ignition in hydrogen-air mixture // AIAA Scitech 2020 Forum. 2020. p. 1892. 10. Tropina A.A., Uddi M., Ju Y. On the effect of nonequilibrium plasma on the minimum ignition energy: Part 2 // IEEE T. Plasma Sci. 2011. Vol. 39. pp. 3283–3287. 11. Pineda D.I., Chen J.Y. Effects of updated transport properties of singlet oxygen species on steady laminar flame simulations // Western States Section Spring Technical Meeting of the Combustion Institute, Seattle, WA, 2016, Paper 139LF-0021 12. D’Angola A., Colonna G., Gorse C., Capitelli M. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range // Eur. Phys. J. D. 2008. Vol. 46. pp. 129–150. 13. Capitelli M., Bruno D., Colonna G., Catalfamo C., Laricchiuta A. Thermodynamics and transport properties of thermal plasmas: the role of electronic excitation // J. Phys. D: Appl. Phys. 2009. Vol. 42. p. 194005. 14. Wang W., Wu Y., Rong M., Ehn L., Cernusak I. Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas // J. Phys. D: Appl. Phys. 2012. Vol. 45. p. 285201. 15. Loukhovitski B.I., Sharipov A.S., Starik A.M. Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability // J. Phys. B: At. Mol. Opt. Phys. 2016. Vol. 49. p. 125102. 16. Sharipov A.S., Loukhovitski B.I., Starik A.M. Influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: theoretical study // J. Phys. B: At. Mol. Opt. Phys. 2017. Vol. 50. p. 165101(19pp). 17. Sharipov A.S., Loukhovitski B.I., Pelevkin A.V., Kobtsev V.D., Kozlov D.N. Polarizability of electronically excited molecular oxygen: theory and experiment // J. Phys. B: At. Mol. Opt. Phys. 2019. Vol. 52. p. 045101. 18. Sharipov A.S., Loukhovitski B.I., Starik A.M. Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, diffusion coefficients, reactivity // J. Phys. B: At. Mol. Opt. Phys. 2016. Vol. 49. p. 125103. 19. Kunc J.A. Central-force potentials for interaction of rotationally and vibrationally excited mol-ecules // J. Phys. B: At. Mol. Opt. Phys. 1990. Vol. 23. pp. 2553–2566. 20. Kang S.H., Kunc J.A. Molecular diameters in high-temperature gases // J. Phys. Chem. 1991. Vol. 95. pp. 6971–6973. 21. Gorbachev Y.E., Gordillo-Vaszquez F.J., Kunc J.A. Diameters of rotationally and vibrationally excited diatomic molecules // Physica A. 1997. Vol. 247, pp. 108–120. 22. Capitelli M., Celiberto R., Gorse C., Laricchiuta A., Minelli P., Pagano D. Electronically excited states and transport properties of thermal plasmas: The reactive thermal conductivity // Phys. Rev. E. 2002. Vol. 66. p. 016403. 23. Kustova E.V., Puzyreva L.A. Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation // Phys. Rev. E. 2009. Vol. 80. p. 046407. 24. Gordiets B., Ferreira C.M., Pinheiro M.J., Ricard A. Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes // Plasma Sources Sci. Technol. 1998. Vol. 7. pp. 363–378. 25. Bourig A., Thevenin D., Martin J.-P., Janiga G., Zahringer K. Numerical modeling of H2–O2 flames involving electronically-excited species O2(a1Δg),O(1D) and OH(2Σ+) // Proc. Combust. Inst. 2009. Vol. 32. pp. 3171–3179. 26. Konnov A.A. On the role of excited species in hydrogen combustion // Combust. Flame. 2015. Vol. 162. pp. 3755–3772. 27. Ombrello T., Popov N. Mechanisms of ethylene flame propagation enhancement by O2(a1Δg) // AerospaceLab. 2015, hal-01270947 28. Kozlov V.E., Starik A.M., Titova N.S. Enhancement of combustion of a hydrogen-air mixture by excitation of O2 molecules to the a1Δg state // Combust. Expl. Shock Waves. 2008. Vol. 44. pp. 371–379. 29. Hirschfelder J.O., Eliason M.A. The estimation of the transport properties for electronically excited atoms and molecules // Annals New York Acad. Sci. 1957. Vol. 67. No. 9. pp. 451–461 30. Eletskii A.V., Capitelli M., Celiberto R., Laricchiuta A. Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms // Phys. Rev. A. 2004. Vol. 69. p. 042718. 31. Istomin V.A., Kustova E.V., Mekhonoshina M.A. Eucken correction in high-temperature gases with electronic excitation // J. Chem. Phys. 2014. Vol. 140. p. 184311. 32. Istomin V.A., Kustova E.V. State-specific transport properties of partially ionized flows of electronically excited atomic gases // Chem. Phys. 2017. Vol. 485. pp. 125–139. 33. Kobtsev V.D. Kostritsa S.A., Smirnov V.V., Titova N.S., Torokhov S.A. Flow reactor experi-mental study of H2/O2 and H2/air mixtures ignition assisted by the electrical discharge // Com-bust. Sci. Technol. 2020. Vol. 192. pp. 744–759. 34. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular theory of gases and liquids. John Wiley and sons, NY; Chapman and Hall, London, 1954. 35. Neufeld P.D., Janzen A.R., Aziz R.A. Empirical equations to calculate 16 of the transport colli-sion integrals Ω(l,s)* for the Lennard-Jones (12–6) potential // J. Chem. Phys. 1972. Vol. 57. pp. 1100-1103. 36. Brown N.J., Bastien L.A., Price P.N. Transport properties for combustion modeling // Prog. Energy Combust. Sci. 2011. Vol. 37. pp. 565–582. 37. Paul P., Warnatz J. A re-evaluation of the means used to calculate transport properties of react-ing flows // Proc. Combust. Inst. 1998. Vol. 27. pp. 495–504. 38. Sharipov A.S., Loukhovitski B.I., Tsai C.-J., Starik A.M. Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases // Eur. Phys. J. D. 2014. Vol. 68. pp. 99. 39. Ruud K., Mennucci B., Cammi R., Frediani L. The calculation of excited-state polarizabilities of solvated molecules // J. Comput. Methods Sci. Eng. 2004. Vol. 4. pp. 381–397. 40. Paleníková J., Kraus M., Neogrády P., Kellö V., Urban M. Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S // Mol. Phys. 2008. Vol. 106. pp. 2333–2344. 41. Starik A.M., Loukhovitski B.I., Sharipov A.S., Titova N.S. Physics and chemistry of the influ-ence of excited molecules on combustion enhancement // Phil. Trans. R. Soc. A. 2015. Vol. 373. p. 20140341. 42. Starikovskiy A., Aleksandrov N. Plasma-assisted ignition and combustion // Prog. Energy Combust. Sci. 2013. Vol. 39. pp. 61–110. 43. Eremin A.V., Korshunova M.R., Mikheyeva E.Y. Influence of flame suppressants on the level of nonequilibrium radiation during ignition of hydrogen-oxygen mixtures behind shock waves // Combust. Expl. Shock Waves. 2019. Vol. 55. pp. 121–124. 44. Bystrov N., Emelianov A., Eremin A., Loukhovitski B., Sharipov A., Yatsenko P. Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane // Combust. Flame. 2020. Vol. 218. pp. 121–133. 45. Pelevkin A.V., Sharipov A.S. Interaction of CH4 with electronically excited O2: ab initio poten-tial energy surfaces and reaction kinetics // Plasma Chem. Plasma Process. 2019. Vol. 39. pp. 1533–1558. 46. Granovsky A.A. Firefly V. 8.2.0 http://classic.chem.msu.su/gran/firefly/index.html 47. Wicke B.G., Klemperer W. Experimental dipole moment function and calculated radiative life-times for vibrational transitions in carbon monoxide a3Π* // J. Chem. Phys. 1975. Vol. 63. pp. 3756–3763. 48. Cambi R., Cappelletti D., Liuti G., Pirani F. Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations // J. Chem. Phys. 1991. Vol. 95. pp. 1852–1862. 49. Hohm U., Thakkar A.J. New relationships connecting the dipole polarizability, radius, and sec-ond ionization potential for atoms // J. Phys. Chem. A. 2012. Vol. 116. pp. 697–703. 50. Bastien L.A.J., Price P.N., Brown N.J. Intermolecular potential parameters and combining rules determined from viscosity data // Int. J. Chem. Kinet. 2010. Vol. 42. pp. 713–723. 51. Middha P., Yang B., Wang H. A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames // Proc. Combust. Inst. 2002. Vol. 29. pp. 1361–1369.