On limiting the lateral expansion of the cloud of fragments of a destructed meteoroid




When a meteoroid breaks up into a large number of fragments, at the first stage they move with a common shock wave, before dispersing enough distance to move independently. We consider models of cloud of fragments that simulate the meteoroid disruption at this stage: the two-parameter model, which takes into account changes in the shape and density of the cloud, and simple models used in the literature that do not take into account these effects. Models differ in equations for the rate of cloud lateral expansion. The unrealistically strong increase in the midsection radius, which is given by simple models, is usually limited in the literature to a certain specified value. The effect of this midsection radius cutoff in different fragment cloud models on the results of modeling the energy deposition of the Chelyabinsk superbolide is studied. For this purpose, the equations of the physical theory of meteors are solved numerically using the same ablation model developed by the authors for different fragmentation models. The influence of the heat transfer coefficient on the energy deposition of the bolide obtained using different fragment cloud models and on the applicability of these models is studied.

meteoroid, cloud of fragments, heat transfer coefficient, energy deposition


Volume 21, issue 1, 2020 year


Об ограничении бокового расширения облака фрагментов разрушенного метеороида

При разрушении метеороида на большое количество фрагментов, на первом этапе они движутся с общей ударной волной, прежде чем разойтись на расстояние, достаточное для независимого движения. Рассматриваются модели облака фрагментов, моделирующие разрушение метеороида на данном этапе: двухпараметрическая модель, учитывающая изменения формы и плотности облака, и простые модели, используемые в литературе, не учитывающие эти эффекты. Модели отличаются уравнениями для скорости бокового расширения облака. Нереально сильное возрастание радиуса миделя, которое дают простые модели, в литературе принято ограничивать некоторым заданным значением. Исследуется влияние такого обрезания радиуса миделя в разных моделях облака фрагментов на результаты моделирования энерговыделения Челябинского суперболида. Для этого уравнения физической теории метеоров решаются численно с использованием одной и той же, разработанной авторами, модели абляции для разных моделей фрагментации. Изучается влияние коэффициента теплопередачи на энерговыделение болида, полученное с помощью разных моделей облака фрагментов, и на применимость этих моделей.

метеороид, облако фрагментов, коэффициент теплопередачи, энерговыделение.


Volume 21, issue 1, 2020 year



1. Maksimov F.A. Supersonic flow of system of bodies. Computer Research and Modeling. V. 5. P.969–980. 2013. (in Russian) https://doi.org/10.20537/2076-7633-2013-5-6-969-980.
2. Grigoryan S.S. Meteorites motion and destruction in planet atmospheres. Cosmic Res. V. 17. P. 724–740. 1979. http://adsabs.harvard.edu/abs/1980CosRe..17..724G.
3. Melosh H.J. Atmospheric breakup of terrestrial impactors. Proc. Lunar Planet. Sci. V. 12A. P.29–35. 1981. http://adsabs.harvard.edu/full/1981mrbf.conf...29M.
4. Chyba C.F., Thomas P.J., Zahnle K.J. The 1908 Tunguska explosion – Atmospheric disruption of a stony asteroid. Nature. V. 361. P. 40–44. 1993. https://www.nature.com/articles/361040a0.
5. Hills J.G., Goda M.P. The fragmentation of small asteroids in the atmosphere. Astron. J. V. 105. №3. P. 1114–1144. 1993. http://adsabs.harvard.edu/full/1993AJ....105.1114H.
6. Grigoryan S.S., Ibodov F.S., Ibadov S.I. Physical mechanism of Chelyabinsk superbolide explotion. Solar Syst. Res. V. 47. P. 268–274. 2013. https://doi.org/10.1134/S0038094613040151.
7. Register P.J., Mathias D.L., Wheeler L.F. Asteroid fragmentation approaches for modeling atmospheric energy deposition. Icarus. V. 284. P. 157–166. 2017. http://doi.org/10.1016/j.icarus.2016.11.020.
8. Collins G.S., Lynch E., McAdam R., Davison T.M. A numerical assessment of simple airblast models of impact airbursts // Meteorit. & Planet. Sci. 2017. V. 52. P. 1542–1560. https://doi.org/10.1111/maps.12873.
9. Brykina I.G., 2018. Large meteoroid fragmentation: modeling the interaction of the Chelyabinsk meteoroid with the atmosphere. Solar Syst. Res. V. 52. P. 426–434. https://doi.org/10.1134/S0038094618050027.
10. McMullan S., Collins G.S. Uncertainty Quantification in Continuous Fragmentation Airburst Models Icarus. V. 327. P. 19–35. 2019. https://doi.org/10.1016/j.icarus.2019.02.013.
11. Borovička J., Popova O. Spurný P. The Maribo CM2 meteorite fall—Survival of weak material at high entry speed // Meteorit. & Planet. Sci. 2019. V. 54. P. 1024–1041. https://doi.org/10.1111/maps.13259.
12. Brykina I.G., Bragin M.D., Egorova L.A. On Models of Meteoroids Fragmentation in the Atmosphere. Physical-Chemical Kinetics in Gas Dynamics. V. 20. № 2. 2019. (in Russian) http://chemphys.edu.ru/issues/2019-20-2/articles/822/.
13. Artemieva N., Shuvalov V. Motion of a fragmented meteoroid through the planetary atmosphere // J. Geophys. Res. Planets. V. 106. E2. P. 3297–3309. 2001. https://doi.org/10.1029/2000JE001264.
14. Lukashenko V.T., Maksimov F.A. Numerically simulated model of meteor body fragments distribution after destruction. Engineering J.: Science and Innovation. V. 9. P. 1–13. 2017. (in Russian) https://doi.org/10.18698/2308-6033-2017-9-1669.
15. Bronshten V.A. Physics of Meteoric Phenomena. Springer, Dordrecht. 1983. https://doi.org/10.1007/978-94-009-7222-3.
16. Golomazov M.M., Litvinov I.A., Litvinov L.A., IvankovA.A., Finchenko V.S. Numerical simulation of flow past descent vehicles during planetary entry. Herald of the Bauman Moscow state technical university, Mechanical engineering. V. 4 № 85. P. 42–53. 2011. (in Russian) http://vestnikmach.ru/eng/catalog/simul/hidden/57.html.
17. Brykina I.G., Egorova L.A. Approximation formulas for the radiative heat flux at high velocities. Fluid Dyn. V. 54. P. 562–574. 2019. https://doi.org/10.1134/S0015462819040037.
18. Suttles J.T., Sullivan E.M., Margolis S.B. Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic earth entry. NASA TN D-7622. 1974. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021216.pdf.
19. Johnston C.O., Mazaheri A., Gnoffo P., Kleb B., Sutton K., Prabhu D., Brandis A.M., Bose D. Radiative heating uncertainty for hyperbolic Earth entry, part 1: flight simulation modeling and uncertainty. J. Spacecraft & Rockets. V. 50. No 1. P. 19–38. 2013. https://doi.org/10.2514/1.A32254.
20. Brown P.G., Assink J.D., Astiz L., Blaauw R., BosloughM.B., Borovička J., Brachet N., BrownD., Campbell-Brown M., Ceranna L., Cooke W., de Groot-Hedlin C., Drob D.P., Edwards W., EversL.G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., MoserD.E., Saffer A., Silber E., SmetsP., Spalding R.E., Spurny P., Tagliaferri E., Uren D., WerykR.J., Whitaker R., Krzeminski Z. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. V. 503. P. 238–241. 2013. https://doi.org/10.1038/nature12741.
21. Borovička J., Spurný P., Brown P., Wiegert P., Kalenda P., Clark, D., Shrbený L. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature. V. 503. 235–237. 2013. https://doi.org/10.1038/nature12671.
22. Popova O.P., Jenniskens P., Emel’yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V.I., Badyukov D.D., Yin Q.–Z., Gural P.S., Albers J., Granvik M., Evers L.G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y.S., Korotkiy S., Serdyuk I., Korochantsev A.V., Larionov M.Yu., Glazachev D., Mayer E.M., Gisler G., Gladkovsky S.V., Wimpenny J., Snanborn M. E., Yamakawa A., Verosub K., Rowland D.J., Roeske S., Botto N. W., Friedrich J.M., Zolensky M., Le L., Ross D., Ziegler K. Nakamura T., Ahn I., Lee J.I., Zhou Q., Li Z.–H., Liu Y., Tan G.–Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A.S., Ishchenko A.V., Schmitt–Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science. V. 342. Iss. 6162. P. 1069–1073. 2013. https://doi.org/10.1126/science.1242642.