Construction of tetrahedral mesh for modeling of the flow around a triangular wing

An original algorithm for mesh construction on the surface of the model of a triangular wing is proposed. Generation of the tetrahedral mesh around the model is based on the surface mesh using the TetGen software. As an example of using the constructed mesh, a numerical simula-tion of the supersonic viscous gas flow around the model with realistic values of the Mach and Reynolds numbers is performed. The simulation is based on a system of quasi-gasdynamic equations.

triangular wing, tetrahedral mesh, mesh generators, quasi-gasdynamic algorithm

Volume 21, issue 1, 2020 year

Построение тетраэдральной расчетной сетки для моделирования обтекания треугольного крыла

Предложен оригинальный алгоритм построения расчетной сетки на поверхности модели треугольного крыла. Построение тетраэдральной расчетной сетки в пространстве вокруг модели производится на основе поверхностной сетки с помощью сеточного генератора TetGen. В качестве примера использования построенной сетки проведено численное моделирование внешнего сверхзвукового обтекания модели потоком вязкого газа при реалистичных значениях чисел Маха и Рейнольдса. Моделирование проводится на основе системы квазигазодинамических уравнений.

треугольное крыло, тетраэдральная сетка, сеточные генераторы, ква-зигазодинамический алгоритм

Volume 21, issue 1, 2020 year

1. S. A. Sukov. Tetrahedral mesh generation algorithms and applications // Preprint 23 (2015), Keldysh Institute of Applied Mathematics of Russian Academy of Science, 22 p. Available at

2. S. V. Polyakov, A. G. Churbanov. Free and open source software for mathematical modeling // Preprint 145 (2019), Keldysh Institute of Applied Mathematics of Russian Academy of Science, 32 p. Available at

3. I. A. Shirokov, T. G. Elizarova On the influence of a spatial grid structure on numerical simulation of a shock wave in a flow around 3D model // Physical-Chemical Kinetics in Gas Dynamics. 2019. V. 20(1)

4. S. V. Alexandrov, A. V. Vaganov, V. I. Shalaev. Physical mechanisms of longitudinal vortices formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges. DOI: 10.15593/2224-9982/2016.45.01

5. P. V. Silvestrov, I. A. Kryukov, B. V. Obnosov. Numerical Simulation of Hypersonic Flow around a Triangular Wing // Physical-Chemical Kinetics in Gas Dynamics. 2018. V. 19 (1). Available at

6. TetGen: A quality tetrahedral mesh generator.

7. B.N. Chetverushkin. Kinetic Schemes and Quasi-Gas Dynamic System of Equations. Barselona: CIMNE, 2008.

8. T.G. Elizarova. Quasi-Gas Dynamic Equations. Dordrecht: Springer, 2009, IBSN 978-3-642-0029-5.

9. Yu. V. Sheretov. Regularized Hydrodynamic Equations, Tver State University, 2016, 222 pp. (in Russian).

10. T. G. Elizarova and I. A. Shirokov. Artificial Dissipation Coefficients in Regularized Equations of Supersonic Aerodynamics // Doklady Mathematics. 2018. V. 98. No. 3. P. 648–651. Pleiades Publishing, Ltd., 2018. DOI:

11. I. A. Shirokov, T. G. Elizarova. Computer simulation of the supersonic flow of a viscous compressible gas around a model body on the basis of the quasi-gas-dynamic algorithm // Physical-Chemical Kinetics in Gas Dynamics. 2017. V. 18 (2).

12. I.A. Shirokov, T.G. Elizarova. Computational experiment in the problem of supersonic flow around a blunt body with tail expansion // Mathematical Modeling. 2020. V. 12. N. 3. P. 433–444.

13. T. A. Kudryashova, S. V. Polyakov, A. A. Sverdlin. Calculation of gas flow parameters around reen-try vehicle // Matem. Mod. 2008. 20:7. P. 13–22. Math. Models Comput. Simul. 2009. 1:4. P. 445–452.

14. K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow. Available at

15. T.G. Elizarova, I.A. Shirokov. Regularized equations and examples of their use in the modeling of gas-dynamic flows. (in Russian).

16. M.V. Kraposhin, E.V. Smirnova, T.G. Elizarova, M.A. Istomina. Development of a new OpenFOAM solver using regularized gas-dynamic equations // Computers and Fluids. 2018. V. 166. P. 163–175.