An original algorithm for mesh construction on the surface of the model of a triangular wing is proposed. Generation of the tetrahedral mesh around the model is based on the surface mesh using the TetGen software. As an example of using the constructed mesh, a numerical simula-tion of the supersonic viscous gas flow around the model with realistic values of the Mach and Reynolds numbers is performed. The simulation is based on a system of quasi-gasdynamic equations.
Построение тетраэдральной расчетной сетки для моделирования обтекания треугольного крыла
Предложен оригинальный алгоритм построения расчетной сетки на поверхности модели треугольного крыла. Построение тетраэдральной расчетной сетки в пространстве вокруг модели производится на основе поверхностной сетки с помощью сеточного генератора TetGen. В качестве примера использования построенной сетки проведено численное моделирование внешнего сверхзвукового обтекания модели потоком вязкого газа при реалистичных значениях чисел Маха и Рейнольдса. Моделирование проводится на основе системы квазигазодинамических уравнений.
1. S. A. Sukov. Tetrahedral mesh generation algorithms and applications // Preprint 23 (2015), Keldysh Institute of Applied Mathematics of Russian Academy of Science, 22 p. Available at http://library.keldysh.ru/preprint.asp?id=2015-23
2. S. V. Polyakov, A. G. Churbanov. Free and open source software for mathematical modeling // Preprint 145 (2019), Keldysh Institute of Applied Mathematics of Russian Academy of Science, 32 p. http://doi.org/10.20948/prepr-2019-145 Available at http://library.keldysh.ru/preprint.asp?id=2019-145
3. I. A. Shirokov, T. G. Elizarova On the influence of a spatial grid structure on numerical simulation of a shock wave in a flow around 3D model // Physical-Chemical Kinetics in Gas Dynamics. 2019. V. 20(1) http://chemphys.edu.ru/issues/2019-20-1/articles/796/
4. S. V. Alexandrov, A. V. Vaganov, V. I. Shalaev. Physical mechanisms of longitudinal vortices formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges. DOI: 10.15593/2224-9982/2016.45.01
5. P. V. Silvestrov, I. A. Kryukov, B. V. Obnosov. Numerical Simulation of Hypersonic Flow around a Triangular Wing // Physical-Chemical Kinetics in Gas Dynamics. 2018. V. 19 (1). Available at http://chemphys.edu.ru/issues/2018-19-1/articles/733/
6. TetGen: A quality tetrahedral mesh generator. http://tetgen.berlios.de/
7. B.N. Chetverushkin. Kinetic Schemes and Quasi-Gas Dynamic System of Equations. Barselona: CIMNE, 2008.
9. Yu. V. Sheretov. Regularized Hydrodynamic Equations, Tver State University, 2016, 222 pp. elibrary.ru/item.asp?id=30097584 (in Russian).
10. T. G. Elizarova and I. A. Shirokov. Artificial Dissipation Coefficients in Regularized Equations of Supersonic Aerodynamics // Doklady Mathematics. 2018. V. 98. No. 3. P. 648–651. Pleiades Publishing, Ltd., 2018. DOI: http://dx.doi.org/10.31857/S086956520003242-9
11. I. A. Shirokov, T. G. Elizarova. Computer simulation of the supersonic flow of a viscous compressible gas around a model body on the basis of the quasi-gas-dynamic algorithm // Physical-Chemical Kinetics in Gas Dynamics. 2017. V. 18 (2). http://chemphys.edu.ru/issues/2017-18-2/articles/721
12. I.A. Shirokov, T.G. Elizarova. Computational experiment in the problem of supersonic flow around a blunt body with tail expansion // Mathematical Modeling. 2020. V. 12. N. 3. P. 433–444.
13. T. A. Kudryashova, S. V. Polyakov, A. A. Sverdlin. Calculation of gas flow parameters around reen-try vehicle // Matem. Mod. 2008. 20:7. P. 13–22. Math. Models Comput. Simul. 2009. 1:4. P. 445–452.
14. K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow. Available at http://www.kiam.ru/MVS/resourses/k100.htm
15. T.G. Elizarova, I.A. Shirokov. Regularized equations and examples of their use in the modeling of gas-dynamic flows. https://elibrary.ru/item.asp?id=29352202 (in Russian).
16. M.V. Kraposhin, E.V. Smirnova, T.G. Elizarova, M.A. Istomina. Development of a new OpenFOAM solver using regularized gas-dynamic equations // Computers and Fluids. 2018. V. 166. P. 163–175.