Slit nozzle and its effect on the stability of induction discharge in the channel of a high-frequency electrodeless plasmatron




This paper studies the discharge existence domain in the cylindrical channel of the IPG-4 inductively coupled plasma facility when slit nozzles with outlet sections of 40×8, 80×15 and 120×9 mm are installed behind it. For each nozzle, the relationship of the pressure in the discharge channel vs the power of the anode supply of the HF-generator was measured under the supersonic outflow regime. The power values of the anode supply of the HF-generator at which discharge extinction takes place were determined for various pressures in the discharge channel under subsonic outflow regimes. The obtained discharge existence domain was compared with the data for the regimes with no nozzle behind the discharge channel of the facility. It was shown that slit nozzles (contrary to expectation) have a weak effect on the discharge extinction boundary in the region of high (>100 hPa) pressures in the discharge channel.

HF-plasmatron, slit nozzle, induction discharge


Volume 20, issue 4, 2019 year


Влияние щелевого сопла на устойчивость индукционного разряда в канале высокочастотного безэлектродного плазмотрона

Исследованы области существования разряда в цилиндрическом канале индукционного плазмотрона ВГУ-4 при установке за ним щелевых сопел с размерами выходных сечений 40x8, 80x15 и 120x9 мм. Для каждого сопла измерены давления в разрядном канале в зависимости от мощности анодного питания ВЧ-генератора плазмотрона при сверхзвуковом режиме истечения. В дозвуковых режимах истечения для различных давлений в разрядном канале определены значения мощностей, при которых происходит срыв разряда. Проведено сравнение полученных областей существования с данными для режимов, реализуемых без установки щелевых сопел за разрядным каналом плазмотрона. Щелевые сопла вопреки ожиданию слабо влияют на границу срыва разряда в области высоких (более 100 гПа) давлений в разрядном канале.

ВЧ-плазмотрон, щелевое сопло, индукционный разряд


Volume 20, issue 4, 2019 year



1. Vasil’evskii S. A., Gordeev A. N., Kolesnikov A. F. Local modeling of the aerodynamic heating of the blunt body surface in subsonic high-enthalpy air flow. Theory and experiment on a high-frequency plasmatron //Fluid Dynamics. 2017. 52(1). pp. 158-164. https://doi.org/10.1134/S001546281701015X
2. Chazot O., Krassilchikoff H. W., Thoemel J. TPS ground testing in plasma wind tunnel for catalytic properties determination //In 46th AIAA aerospace sciences meeting and exhibit. 2008. p. 1252. https://doi.org/10.2514/6.2008-1252
3. Owens W., Uhl J., Dougherty M., Lutz A., Fletcher D., Meyers J. Development of a 30kw inductively coupled plasma torch for aerospace material testing //In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. p. 4322. https://doi.org/10.2514/6.2010-4322
4. Muylaert J. M., Cipollini F., Auweter-Kurtz M., Balat M., Borrelli S., Conte D., Traineau J. C., Guelhan A., Enzian A. European plasma working group: status of activities and future plans //Hot Structures and Thermal Protection Systems for Space Vehicles. 2003. Vol. 521. p 321.
5. Viladegut A., Chazot O. OFF-Stagnation point testing in plasma facility //Progress in Flight Physics. 2015. Vol. 7. pp 113-122. https://doi.org/10.1051/eucass/201507113
6. Gokcen T., Skokova K., Alunni A. Computational Simulations of Panel Test Facility Flow: Compression-Pad Arc-Jet Tests //42nd AIAA Thermophysics Conference. 2011. p 3635. https://doi.org/10.2514/6.2011-3635
7. Bityurin V. А., Bocharov A. N., Zalogin G. N., Knotko V. B., Krasilnikov A. V., Lineberry J. T. On MHD phenomena modeling at high frequency plasmatron //33rd Plasmadynamics and Lasers Conference. 2002. p 2253. https://doi.org/10.2514/6.2002-2253
8. Gordeev A. N., Chaplygin A. V. Experimental study of heat transfer between dissociated air flow and a flat plate at angle of attack in RF-plasmatron //Physical-Chemical Kinetics in Gas Dynamics. 2019. 20(1). http://doi.org/10.33257/PhChGD.20.1.780
9. Gordeev A. N. Overview of Characteristics and Experiments in IPM Plasmatrons //NATO RTO EN-8 (Neuilly-Sur-Seine Cedex, France). 2000. pp. 1A-1/1A-18.
10. Kolesnikov A. F., Yakushin M. I., Pershin I. S., Vasil’evskii S. A., Bykova N. G., Gordeev A. N., Chazot O., Muylaert J. Comparative analysis of the inductive plasmatrons capabilities for thermochemical simulation at the Earth and Mars atmospheric entry conditions //XI International Conference on the Methods of Aerophysical Research (ICMAR). 2002. pp 1-7.