Экспериментальное исследование реакции н-бутанола с кислородом за ударными волнами АРАС методом



Experimental study of reaction of n-butanol with oxygen behind shock waves using ARAS method

This paper presents new data on the time profiles of the concentration of atomic oxygen obtained during high-temperature oxidation of n-butanol behind reflected shock waves in the temperature range of 1600–2600 K at pressures of 2–3 bar. The kinetics of the reaction of n-C4H9OH with atomic oxygen has been studied. As a source of oxygen atoms, a small amount of nitrous oxide N2O was added to the mixture. Quantitative measurements of the concentration profiles of oxygen atoms were carried out using atomic resonance absorption spectroscopy (ARAS) on the resonance line of the O atom (λ= 130.5 nm). Kinetic analysis of the obtained data was carried out using the Chemkin package. The experimental results obtained are compared with actual kinetic combustion schemes of n-butanol. It is shown that the kinetic schemes of n-butanol combustion available in the literature in some cases do not exactly agree with the experimental results. An analysis of possible additions to the existing kinetic schemes was carried out. As a result, it was suggested possible improvement to the existing kinetic schemes for the combustion of n-butanol at high temperatures.

biofuel, n-butanol, ARAS, shock tube.

Никита Сергеевич Быстров, Александр Валентинович Емельянов, Александр Викторович Еремин, Павел Иванович Яценко

Том 20, выпуск 1, 2019 год



В данной работе представлены новые данные о временных профилях концентрации атомарного кислорода, полученных при высокотемпературном окислении н-бутанола за отраженными ударными волнами в диапазоне температур 1600−2600 K при давлениях 2-3 бар. Изучена кинетика реакции n-C4H9OH с атомарным кислородом. В качестве источников атомов кислорода в смесь добавлялось небольшое количество закиси азота N2O. Количественные измерения профилей концентрации атомов кислорода проводились методом атомно-резонансной абсорбционной спектроскопии (АРАС) на резонансной линии атома О (λ = 130.5 нм). Кинетический анализ полученных данных проводился с использованием пакета Chemkin. Проведено сравнение полученных экспериментальных результатов с актуальными кинетическими схемами горения н-бутанола. Показано, что имеющиеся в литературе кинетические схемы горения н-бутанола в ряде случаев не совсем точно согласуются с экспериментальными результатами. Проведен анализ возможных дополнений в применяемые кинетические схемы. В результате удалось улучшить существующие кинетические схемы горения н-бутанола при высоких температурах.

биотопливо, н-бутанол, АРАС, ударная труба.

Никита Сергеевич Быстров, Александр Валентинович Емельянов, Александр Викторович Еремин, Павел Иванович Яценко

Том 20, выпуск 1, 2019 год



1. Kohse-Höinghaus K., Oßwald P., Cool T. A., Kasper T., Hansen N., Qi F., Westbrook C. K., Westmoreland P. R. Biofuel combustion chemistry: From ethanol to biodiesel // Angew. Chem., Int. Ed. - 2010. - Vol. 49 (21). - P. 3572-3597.
2. Moss J. T., Berkowitz A. M., Oehlschlaeger M. A., Biet J., Warth V., Glaude P. A., Battin-Leclerc F. An experimental and kinetic modeling study of the oxidation of the four isomers of butanol // J. Phys. Chem. A. - 2008. - Vol. 112 (43). - P. 10843-10855.
3. Black G., Curran H. J., Pichon S., Simmie J. M., Zhukov V. Bio-butanol: Combustion properties and detailed chemical kinetic model // Combust. Flame. - 2010. - Vol. 157 (2). - P. 363-373.
4. Durre P. Biobutanol: an attractive biofuel // Biotechnol J. - 2007. - Vol. 2. - P. 1525-1534, doi:10.1002/200700169.
5. Sarathy S., Oßwald P., Hansen N., Kohse-Höinghaus K. Alcohol combustion chemistry // Progress in Energy and Combustion Science. - 2014. - Vol. 44. - P. 40-102.
6. Black G., Curran H. J., Pichon S., Simmie J. M., Zhukov V. Bio-butanol: Combustion properties and detailed chemical kinetic model // Comb. Flame. -2010. - Vol. 157. - P. 363-373.
7. Jerzy M., John M., Henry J. Curran The elimination of water from a conformationally complex alcohol: A computational study of the gas phase dehydration of n-butanol // Journal of Molecular Structure. - 2009. - Vol. 928. - P. 149-157.
8. Michael R., Kevin M., Steven P., Guy B., William H. Green Comprehensive reaction mechanism for n-butanol pyrolysis and combustion // Comb. Flame. - 2011. - Vol. 158. - P. 16-41.
9. Nigam P.S., Singh A. Production of liquid biofuels from renewable resources // Prog. Energy Combust. Sci. - 2011. - Vol. 30. - P. 37-52.
10. Cai J., Zhang L., Zhang F., Wang Z., Cheng Z., Yuan W., Qi F. Experimental and Kinetic Modeling Study of n‑Butanol Pyrolysis and Combustion // Energy and Fuels. - 2010. - Vol. 102. - P. 223-239.
11. Frassoldati A., Grana R., Faravelli T., Ranzi E., Oßwald P., Kohse-Höinghaus K. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames // Comb. Flame. - 2012. Vol. 159. - P. 2295-2311.
12. Claudette M., Tsang W. Shock Tube Study on the Thermal Decomposition of n‑Butanol // The Journal of Physical Chemistry. - 2003. - Vol. 109. - P. 434-451.
13. Charles K. Westbrook Biofuels Combustion // Annu. Rev. Phys. Chem. - 2013. - Vol. 64. - P. 201-19, doi.org/10.1146/annurev-physchem-040412-110009.
14. Davidson D. F., Ranganath K. Y., Lam M., Liaw M., Hong Z., Hanson R. K. Ignition delay time measurements of normal alkanes and simple oxygenates // Journal of Propulsion and Power. - 2010. - Vol. 26 (2). - P. 280-287, doi:10.2514/1.44034.
15. Heufer K. A., Fernandes R. X., Olivier H., Beeckmann, J., Rohl O., Peters N. Shock tube investigations of ignition delays of n-butanol at elevated pressures between 770 and 1250 K // Proc. Combust. Inst. - 2011. - Vol. 33 (1). - P. 359-366.
16. Vranckx S., Heufer K. A., Lee C., Olivier H., Schill L., Kopp W. A., Leonhard K., Taatjes C. A., Fernandes R. X. Role of peroxy chemistry in the high-pressure ignition of n-butanol Experiments and detailed kinetic modelling // Combust. Flame. - 2011. - Vol. 158 (8). - P. 1444-1455.
17. Weber B. W., Kumar K., Zhang Y., Sung C. J. Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature // Combust. Flame. - 2011. - Vol. 158 (5). - P. 809-819.
18. Stranic I., Chase D. P., Harmon J. T., Yang S., Davidson D. F., Hanson R. K. Shock tube measurements of ignition delay times for the butanol isomers // Combust. Flame. - 2012. - Vol. 159 (2). - P. 516-527.
19. Noorani K. E., Akih-Kumgeh B., Bergthorson J. M. Comparative high temperature shock tube ignition of C1−C4 primary alcohols // Energy Fuels. - 2010. - Vol. 24 (11). - P. 5834-5843.
20. Karwat D. M., Wagnon S. W., Teini P. D., Wooldridge M. S. On the chemical kinetics of n-butanol: Ignition and speciation studies // J. Phys. Chem. A. - 2011. - Vol. 115 (19). - P. 4909-4921.
21. Gu X. L., Huang Z. H., Li Q. Q., Tang C. L. Measurements of laminar burning velocities and Markstein lengths of n-butanol−air premixed mixtures at elevated temperatures and pressures // Energy Fuels. - 2009. - Vol. 23 (10). - P. 4900-4907.
22. Veloo P. S., Egolfopoulos F. N. Flame propagation of butanol isomers/air mixtures // Proc. Combust. Inst. - 2011. - Vol. 33 (1). - P. 987-993.
23. Gu X. L., Li Q. Q., Huang Z. H. Laminar burning characteristics of diluted n-butanol/air mixtures. Combust. Sci. Technol. - 2011. - Vol. 183 (12). - P. 1360-1375.
24. Gu X. L., Huang Z. H., Wu S., Li Q. Q. Laminar burning velocities and flame instabilities of butanol isomers−air mixtures // Combust. Flame. - 2010. - Vol. 157 (12). - P. 2318-2325.
25. Harper M. R., Van Geem K. M., Pyl S. P., Marin G. B., Green W. H. Comprehensive reaction mechanism for n-butanol pyrolysis and combustion // Combust. Flame. - 2011. - Vol. 158 (1). - P. 16-41.
26. Dagaut P., Sarathy S. M., Thomson M. J. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor // Proc. Combust. Inst. - 2009. - Vol. 32 (1). - P. 229-237.
27. Sarathy S. M., Thomson M. J., Togbe C., Dagaut P., Halter F., Mounaim-Rousselle C. An experimental and kinetic modeling study of n-butanol combustion // Combust. Flame. - 2009. - Vol. 156 (4). - P. 852-864.
28. Yang B., Oßwald P., Li Y. Y., Wang J., Wei L. X., Tian Z. Y., Qi F., Kohse-Höinghaus K. Identification of combustion intermediates in isomeric fuel-rich premixed butanol−oxygen flames at low pressure // Combust. Flame. - 2007. - Vol. 148 (4). - P. 198-209.
29. Hansen N., Harper M. R., Green W. H. High-temperature oxidation chemistry of n-butanol Experiments in low-pressure premixed flames and detailed kinetic modeling // Phys. Chem. Chem. Phys. - 2011. - Vol. 13 (45). - P. 20262-20274.
30. Oßwald P., Guldenberg H., Kohse-Höinghaus K., Yang B., Yuan T., Qi F. Combustion of butanol isomers A detailed molecular beam mass spectrometry investigation of their flame chemistry // Combust. Flame. - 2011. - Vol. 158 (1). - P. 2-15.
31. Sarathy S. M., Vranckx S., Yasunaga K., Mehl M., Oßwald P., Metcalfe W. K., Westbrook C. K., Pitz W. J., Kohse-Höinghaus K., Fernandes R. X., Curran H. J. A comprehensive chemical kinetic combustion model for the four butanol isomers // Combust. Flame. - 2012. - Vol. 159 (6). - P. 2028-2055.
32. Drakon A. V., Emelianov A. V., Eremin A. V., Yatsenko P. I. Study of trifluoromethane dissociation within wide pressure and temperature ranges by molecular resonance absorption spectroscopy // High Temp. - 2017. - Vol. 55. - P. 239-245.
33. Emelianov A. V., Eremin A. V., Yatsenko P. I. Experimental study of chlorine atom interaction with acetylene behind shock waves // High Temp. - 2017. - Vol. 55. - P. 788-794.
34. Emelianov A. V., Eremin A. V., Yatsenko P. I. The study of C2F4Br2 dissociation kinetics using methods of atomic and molecular resonance absorption spectroscopy behind shock waves // J. Phys.: Conf. Ser. - 2018. - Vol. 946. - P. 012-070.
35. Bystrov N. S., Emelianov A. V., Eremin A. V., Yatsenko P. I. Direct measurements of rate coefficients for thermal decomposition of CF3I using shock-tube ARAS technique // J. Phys. D: Appl. Phys. - 2018. - Vol. 51 (18). - P. 184-204.
36. Javoy S., Mevel R., Paillard C. E. A study of N2O decomposition rate constant at high temperature: Application to the reduction of nitrous oxide by hydrogen // Int. J Chem. Kinet. - 2009. - Vol. 41. - P. 357-375.
37. Naudet V., Abid S., Paillard C.E. A High Temperature Chemical Kinetics Study of the O2 Dissociation and the O Atoms Recombination by ARAS // J. Chim. Phys. - 1999. - V. 96. - P. 1123-1145.
38. Thielen K., Roth P. Resonance absorption measurements of N and O atoms in high temperature NO dissociation and formation kinetics // Proc. Combust. Inst. - 1984. - Vol. 20. - P. 685-693.
39. Konnov A. A., De Ruyck J. Kinetic Modeling of Nitrogen Oxides Decomposition at Flame Temperatures // J. Combust Sci. Technol. - 1999. - Vol. 149. - P. 53-78.
40. Frassoldati A., Cuoci A., Faravelli T., Ranzi E. Kinetic Modeling of the Oxidation of Ethanol and Gasoline Surrogate Mixtures // Combust. Sci. Tech. - 2010. - Vol. 182. - P. 653-667.
41. Subith S. V., Sarathy S. M. On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model // Fuel. - 2013. - Vol. 27 (11). - P. 7072-7080.
42. Bozzelli J.W., Chang A., Dean A.M. Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure // Symp. Int. Combust. Proc. - 1994. - Vol. 25. - P. 965-974.
43. Starikovskii A. Y. Kinetics and mechanism of reaction in N2O-CO system at high temperatures // Khim. Fiz. - 1994. - Vol. - 13. - P. 94-120.
44. Roose T. R., Hanson R. K., Kruger C.H. Decomposition of NO in the Presence of NH3 // Proc. Int. Symp. Shock Tubes Waves. - 1978. - Vol. 11. - P. 309-331.
45. Trenwith A. B. The kinetics of the oxidation of ethylene by nitrous oxide // J. Chem. Soc. - 1960. - Vol. 79. - P. 3722-3726.
46. Allen M. T., Yetter R. A., Dryer F. L. The decomposition of nitrous oxide at 1.5 < P < 10.5 atm and 1103 < T < 1173 K // Int. J. Chem. Kinet. V. 27 P. 883 – 909 Y. 1995
47. Zuev A.P., Starikovskii A.Y. Reactions involving nitrogen oxides at high temperatures. The reaction of N2O with O // Khim. Fiz. - 1991. - Vol.10. - P. 179-189.
48. Kenwright R., Trenwith A.B. The kinetics of the oxidation of ethane by nitrous oxide. Part II. // J. Chem. Soc. - 1959. - Vol. 63. - P. 112-141.
49. Tomeczek J., Gradon B. The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames // Combust. Flame. - 2003. - Vol. 133. - P. 311-322.
50. Bauerle S., Klatt M., Wagner H. G. Investigation of the reaction of CH2 with NO at high temperatures // Ber. Bunsenges. Phys. Chem. - 1995. - Vol. 99. - P. 97-104.
51. Dagaut P., Lecomte F., Chevailler S., Cathonnet M. Experimental and Kinetic Modeling of Nitric Oxide Reduction by Acetylene in an Atmospheric Pressure Jet-Stirred Reactor // Fuel V.78 P. 1245 – 1252 Y. 1999
52. Chakraborty D., Lin M.C. Theoretical studies of methyleneamino (CH2N) radical reactions. 1. Rate constants and product branching ratios for the CH2N + N2O process by ab initio molecular orbital/statistical theory calculations // J. Phys. Chem. A. - 1999. - Vol. 103. - P. 601-606.
53. Cohen N., Westberg K.R. Chemical kinetic data sheets for high-temperature reactions. Part II // J. Phys. Chem. Ref. Data. - 1991. - Vol. 20. - P. 1211-1311.
54. Hack W., Wagner H. G., Zaspypkin A. Elementary reactions of NH and NH(X3Σ) with N, O and NO // Ber. Bunsenges. Phys. Chem. - 1994. - Vol. 98. - P. 156-164.
55. McCullough R.W., Kruger C.H., Hanson R.K. A Flow Tube Reactor Study of Thermal Decomposition Rates of Nitric Oxide // Combust. Sci. Technol. - 1977. - Vol. 15. - P. 156-179.
56. Murrell J.N., Rodriguez J.A. Predicted rate constants for the exothermic reactions of ground state oxygen atoms and CH radicals // J. Mol. Struct. THEOCHEM. - 1986. - Vol. 139. - P. 354-376.
57. Tsuboi T., Hashimoto K. Shock Tube Study on Homogeneous Thermal Oxidation of Methanol // Combust. Flame. - 1981. - Vol. 42. - P. 265-291.
58. Peeters J., Boullart W., Devriendt K. CH (a4Σ- and/or X2II) formation in the reaction between ketenyl radicals and oxygen atoms. Determination of the CH yield between 405 and 960 K // J. Phys. Chem. - 1995. - Vol. 99. - P. 3583-3591.