Quantum mechanical simulation of the direct mechanism for exchange reaction СО + N2O <-> СO2+N2




The paper studies exchange processes between carbon monoxide and nitrogen oxide CO+N2O <-> СO2+N2 resulting in the formation of CO2. The methods of quantum mechanics are used to obtain transition states, vibrational frequencies and reaction paths, and their key energy characteristics. The rate constants of forward and backward reactions were calculated within the framework of the transition state theory. The critical review of the available experimental data was performed by comparison with DFT calculation results. Their approximations are presented in the form of Arrhenius in a wide temperature range of 300 to 2500 K.

quantum mechanics, transition state theory, exchange reactions, rate constant


Volume 19, issue 2, 2018 year


Квантово-механическое моделирование прямого механизма обменной реакции СО + N2O <-> СO2+N2

Проведено исследование обменного процесса между угарным газом и оксидом азота CO+N2O <-> СO2+N2, приводящим к образованию СO2. Методами квантовой механики получены переходные состояния, частоты колебаний и пути реакции, а также их ключевые энергетические характеристики. В рамках теории переходного состояния были рассчитаны константы скоростей прямых и обратных реакций. Проведен критический анализ имеющихся в литературе экспериментальных данных на основе сравнения с результатами DFT расчетов. Рекомендуемые константы скорости представлены в обобщенной форме Аррениуса в широком диапазоне температур 300-2500 K.

квантово-механические моделирование, теория переходного состояния, обменная реакция, константа скорости


Volume 19, issue 2, 2018 year



1. Lefebvre A.H., Ballal D.R. Gas turbine combustion: alternative fuels and emissions. Third edition ed. Boca Raton: CRC Press, 2010. 559 pp.
2. Bowman C.T. Control of Combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulation // Proc. Combust. Inst., Vol. 24, No. 1, 1992. pp. 859-878.
3. Zaslonko I.S., Kogarko S.M., Mozzhukhin E.V., Mukoseev Y.K. Kinetic features of N2O reactions with CO under nonequilibrium conditions // Fizika Goreniya i Vzryva, Vol. 14, No. 1, January-February 1978. pp. 3-11.
4. Zaslonko I.S., Losev A.S., Mozzhukhin E.V., Mukoseev Y.K. An Activation Mechanism for the Exchange Reaction between N2O and Carbon Monoxide // Kinet. Catal., Vol. 20, No. 6, 1979. pp. 1385-1394.
5. Loirat H., Caralp F., Destriau M. Rate Constant and Activation Energy of the Exchange Reaction CO+N2O - CO2+N2 in the Temperature Range 1060-1220 K. Application of the Thermal Explosion Theory to a System with Two Parallel Reactions // J. Phys. Chem, Vol. 87, 1983. pp. 2455-2457.
6. Loirat H., Caralp F., Destriau M., Lesclaux R. Oxidation of CO by N2O between 1076 and 1228 K: Determlnatlon of the Rate Constant of the Exchange Reaction // J. Phys. Chem, Vol. 91, 1987. pp. 6538-6542.
7. Fujii N., Kakuda T., Takeishi N., Miyama H. Kinetics of the High Temperature Reaction of CO with N2O // J. Phys. Chem., Vol. 91, 1987. pp. 2144-2148.
8. Milks D., Matula R.A. A Single-Pulse Shock-Tube Study of the Reaction Between Nitrous Oxide and Carbon Monoxide // Symp. Int. Combust. Proc., Vol. 14, 1973. pp. 83-97.
9. Lin M.C., Bauer S.H. Bimolecular Reaction of N2O with CO and the Recombination of O and CO as Studied in a Single-Pulse Shock Tube // The Journal of Chemical Physics, Vol. 50, 1969. pp. 3377-3391.
10. Tsang W., Herron J.T. Chemical Kinetic Data Base for Propellant Combustion I. Reactions Involving NO, NO2, HNO, HNO2, HCN and N2O // J. Phys. Chem. Ref. Data, Vol. 20, No. 4, 1991. pp. 609-663.
11. Tsuchiya K., Kamiya K., Shiina H., Oya M. Computational Studies on the Reactions of N2O with O(3P) and CO // Chemistry Letters, Vol. 28, No. 7, 1999. pp. 609-610.
12. Wang Y., Fu G., Zhang Y., Xu X., Wan H. O-atom transfer reaction from N2O to CO: A theoretical investigation // Chemical Physics Letters, Vol. 475, 2009. pp. 202-207.
13. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc., 2009.
14. Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Phys. Rev., Vol. 136, No. 3b, 1964. pp. b864-b871.
15. Kohn W., Sham L.J. Self-consistent equations including exchange and correlationeffects // Phys. Rev., Vol. 140, No. 4A, 1965. pp. a1133-a1138.
16. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior // Phys. Rev. A, Vol. 38, No. 6, 1988. pp. 3098-3100.
17. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron densiry // Phys. Rev. B, Vol. 37, No. 2, 1988. pp. 785-789.
18. Haharan P.C., Pople J.A. The influence of polarization functions on molecular orbital hydrogenation energies // Theor. Chem. Acta. 1973. Vol. 28. pp. 213-222.
19. Kendall R.A., Dunning T.H., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions // The Journal of Chemical Physics, Vol. 96, No. 9, 1992. pp. 6796-6806.
20. Johnson III R.D. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 18 2016. URL: http://cccbdb.nist.gov/
21. Glasstone S., Laidler K.J., Eyring H. Theory of Rate Processes. New York: McGraw-Hill, 1941.
22. Truhlar D.G., Garrett B.C., Klippenstein S.J. Current Status of Transition-State Theory // The Journal of Physical Chemistry, Vol. 100, No. 31, 1996. pp. 12771–12800.
23. Уманский С.Я. Теория элементарного акта химического превращения в газе // Физико-химическая кинетика в газовой динамике, Т. 4, 2006. С. http://chemphys.edu.ru/issues/2006-4/articles/91/.
24. Pogosbekian M.J., Sergievskaia A.L., Losev S.A. Verification of theoretical models of chemical exchange reactions on the basis of quasiclassical trajectory calculations // Chemical Physics, Vol. 328, 2006. pp. 371-378.
25. Buchachenko A.A., Kroupnov A.A., Kovalev V.L. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach // Acta Astronautica, Vol. 113, 2015. pp. 142-148.
26. Linstrom P.J., Mallard W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology 2018. URL: https://webbook.nist.gov/chemistry/
27. Fujii N., Kakuda T., Sugiyama T., Miyama H. Direct Determination of the Rate Constant for the Reaction CO + N2O -> CO2 + N2 // Chemical Physics Letters, Vol. 122, No. 5, 1985. pp. 489-492.