Экспериментальное исследование прохождения СВЧ (40 ГГц) и лазерного излучения (1.55 мкм) сквозь слой воздушной плазмы за фронтом ударной волны



Experimental study of the microwave (40 GHz) and laser radiation (1.55 μm) transmission through an air-plasma layer behind the shock wave front

The transmission of microwave and laser radiation through the air-plasma layer behind the front of the shock wave is studied on the shock tube. The well-known fact that the plasma is not transparent for microwave radiation in the range of electron concentrations 2∙1012 - 4∙1014 cm-3 is experimentally confirmed. At the same time, the theoretical estimates of plasma transparence for laser infrared radiation at the wavelength of 1.55 μm is first proved experimentally.

shock wave, plasma, electrons concentration, absorption of laser radiation, absorption of microwave radiation

Наталья Германовна Быкова, Константин Семенович Гочелашвили, Игорь Евгеньевич Забелинский, Дмитрий Михайлович Карфидов, Галина Федоровна Макаренко, Андрей Констинтинович Сенаторов, Константин Федорович Сергейчев, Олег Петрович Шаталов

Том 18, выпуск 1, 2017 год



На ударной трубе исследовано прохождение СВЧ и лазерного излучения сквозь слой воздушной плазмы за фронтом ударной волны. Экспериментально подтверждён известный факт, что в диапазоне концентраций электронов 2∙1012 - 4∙1014 см-3, плазма не прозрачна для излучения СВЧ-сигнала (частота излучения 40ГГц). В то же время впервые экспериментально подтверждена предсказанная ранее теоретические прозрачность воздушной плазмы для лазерного инфракрасного излучения на длине волны 1,55 мкм.

ударные волны, плазма, концентрация электронов, поглощение лазерного излучения, поглощение СВЧ излучения

Наталья Германовна Быкова, Константин Семенович Гочелашвили, Игорь Евгеньевич Забелинский, Дмитрий Михайлович Карфидов, Галина Федоровна Макаренко, Андрей Констинтинович Сенаторов, Константин Федорович Сергейчев, Олег Петрович Шаталов

Том 18, выпуск 1, 2017 год



1. Australian Space Academy, "Spacecraft reentry communications blackout", http://www.spaceacademy.net.au/spacelink/blackout.htm
2. Kim M., Keidar M., Boid I.D. Two-dimensional Model of an Electromagnetic Layer for the Mitigation of Communications Blackout. AIAA-Paper 2009-1232. 2009.
3. Heald M.A., Wharton C.B. Plasma diagnostics with microwaves. John Wiley & Sons Inc., NewYork, 1978. 452 p.
4. Hartunian R.A., Stewart G.E., Fergason S.D., Curtiss T.J., and Seibold R.W. Cause and Mitigations Radio Frequency (RF) Blackout During re-entry of Reusable Launch Vehicles. Aerospace Corporation, ATR-2007(5309)-1. 2007.
5. Kundrapu M., Loverich J., Beckwith K., Stoltz P., Shashurin A., and Keidar M. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles// Journal of Spacecraft and Rockets. 2014. V.52. P. 853-862.
6. Hodara H. The use of magnetic fields in the elimination of the re-entry radio blackout. Proc. IRE. 1961. V.49. P. 1825-1830.
7. Manning R.M. Analysis of electromagnetic wave propagation in a magnetized re-entry plasma sheath via the kinetic equation., NASA/TM–2009-216096. 2009.
8. Thoma C., Rose D.V., Miller C.L., Clark R.E., and Hughes T.P. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer // J. Appl. Phys. 2009. V.106. 043301.
9. Starkey R.P. Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry blackout analysis. AIAA-Paper 2003-4167. 2003.
10. Stenzel R.L. Whistler wave propagation in a large magnetoplasma // Phys. Fluids. 1976. V19. P. 857–864.
11. Usui H., Matsumoto H., Yamashita F., Yamane M., and Takenaka S. Computer experiments on radio blackout of a reentry vehicle. AFRL-VS-TR-20001578. 2000. P.107–110.
12. Shroeder L.C., Russo F.P. Flight Investigation and Analysis Alleviation of Communications Blackout by Water Injection During Gemini 3 Reentry. NASA TM X-1521. 1968.
13. Gillman E.D., Foster J.E., and Blankson I.M. Review of leading approaches for mitigating hyper-sonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation. NASA TM–2010-216220. 2010.
14. Korotkevich A.O., Newell A.C., Zakharov V.E. Communication through Plasma Sheaths// Journal of Applied Physics. 2007. V.102. 083305. DOI: 10.1063/1.2794856
15. Takahashi Y., Yamada K., and Abe T. Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry// J. Spacecr. Rockets. 2014. V.51. P.430–441.
16. Prokhorov A.M., Bunkin F.V., Gochelashvily K.S., Shishov V.I. Laser irradiance propagation in turbulent media. Proc. IEEE 63. P. 790-811. 1975.
17. Barr T.A., Cason Ch. Laboratory Simulation of Laser Communications from a Reentry Vehicle. The Space Congress. Proceedings. (5th). The Challenge of the 1970's. P. 9.4-1 - 9.4-5. 1968. http://commons.erau.edu/space-congress-proceedings /proceedings-1968-5th/session-9/2
18. Hang J.I., Yong M.A., Chao M.A., Lin J., and Wang H. Transmission of optical signal in the plasma sheath of reentry vehicle. Proc. SPIE 6795, 67955E. 2007.
19. Leeb W.R. Laser Space Communications: Systems, Technologies, and Application // Rev. Laser Eng. 2000. V.28. P. 804-808.
20. Cornwell D.M. NASAs Optical Communications Program for 2015 and beyond. Proc. SPIE. 9354. 2015.
21. Rabinovich W.S., Moore C.I., Mahon R., Goetz P.G., R. Burris H., Ferraro M.S.,. Murphy J.L., Thomas L.M., Gilbreath G.C., M. Vilcheck, and Suite M.R. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory//Appl. Opt. 2015. V.54. P. F189-F200.
22. Быкова Н.Г., Герасимов И.Г., Забелинский И.Е., Ибрагимова Л.Б., Шаталов О.П. Исследование ударно-нагретого воздуха в спектральной области 120-900 нм: панорамный спектр и эволюция излучения за фронтом ударной волны // Физико-химическая кинетика в газовой динамике. 2014. Т. 15. № 2. 7 стр.
23. Shang J.S., Surzhikov S.T. Nonequilibrium radiative hypersonic flow simulation// Progress in Aerospace Sciences. 2012. V.53. P. 46–65.
24. Ramo S., Whinnery J.R. Fields and Waves in Modern Radio. 2nd Ed. By J. Wiley&Sons Inc. 1953. 576 p.