Упрощенная кинетическая схема горения смеси RP-1/O2 для CFD-расчетов ракетных двигателей



Reduced Kinetic Model of RP-1/O2 Mixture Combustion for CFD modeling of Rocket Engines

A reduced combustion kinetic model of the RP-1 and oxygen mixture are developed. Constants of reaction rates are presented. Model verification was performed by NASA CEA code comparison in the pressure and the stoichiometric ratio of fuel component range specific for a chambers of rocket engines. Results of computational modeling of the rocket engine RD-170 / RD-180 are described. The model predictions agreed reasonably with known experimental and computational data.

nozzle, gas dynamics, burning, kinetic mechanism, computational modeling, RP-1, liquid rocket engine


Том 17, выпуск 1, 2016 год



Разработан упрощенный кинетический механизм процесса горения топливной смеси керосина марки RP-1 и кислорода, приведены кинетические константы реакций. Ве-рификация механизма выполнена в диапазоне давлений и стехиометрических соот-ношений компонент топлива, характерных для камер сгорания ракетных двигателей. Описаны результаты численного моделирования ракетного двигателя РД-170/РД-180, демонстрирующие согласование данного механизма с известными паспортными и расчетными данными.

сопло, газодинамика, горение, кинетический механизм, численное моделирование, керосин, жидкостный ракетный двигатель


Том 17, выпуск 1, 2016 год



1. Musial N.T., James J.W. Base Flow Characteristics for Several Four-clustered Rocket Con-figurations at Mach Numbers from 2.0 to 3.5 // NASA Technical Note D-1093. 1961.
2. Franzelli B., Riber E., Sanjose M., Poinsot T. A two-step chemical scheme for kerosene-air premixed flame // Combustion and Flame vol. 157, 2010. p. 1364–1373.
3. Choi J. A Quasi Global Mechanism of Kerosene Combustion for Propulsion Applications, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Confer-ences, http://dx.doi.org/10.2514/6.2011-5853.
4. Wang T. Thermophysics Characterization of Kerosene Combustion, Journal of Thermophys-ics and Heat Transfer, Vol. 15, No. 2 (2001), pp. 140-147. http://dx.doi.org/10.2514/2.6602
5. Fedorov V., Chvanov V., Chelkis F., Ivanov N., Lozinskay I., Buryak A. The Chamber Cooling System of RD-170 Engine Family: Design, Parameters, and Hardware Investigation Data, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Confer-ences, http://dx.doi.org/10.2514/6.2006-4363
6. Tanner, L.G. Development and Characteristics of the Russian / American RD-180 Rocket Engine, AIAA Liquid Propulsion Short Course, 38th Joint Propulsion Conference, Indianapolis, IN, July 2002.
7. McBride B.J., Gordon S., Reno M.A. Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species // NASA Technical Memorandum 4513, 1993.
8. Gordon S. McBride B. J., "Computer Program for Calculation of Complex Chemical Equilib-rium Compositions and Applications," NASA Reference Publication 1311 (1996).
9. Sutton G.P., Biblarz O. Rocket Propulsion Elements. 2001. 7th Edition.
10. Sasanapuri B., Kumar M., Wirogo S., Kurbatskii K.A. Numerical Simulation of a Hypersonic Cruise Nozzle // 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 07 - 10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas
DOI: 10.2514/6.2013-492