Laser based synthesis of thin iron film covered by carbon

This work is devoted to a technique of ultraviolet pulse laser synthesis of thin films at room temperature. The results of thin film synthesis by the photo-dissociation of carbon and metal-bearing compounds are demonstrated. The iron thin film covered by carbon was produced by photolysis of the mixture of CCl4 and Fe(CO)5 with argon on silicon monocrystalline substrates. Photo-dissociation of this mixture leads to the appearance of iron atoms forming the initial iron coating on the substrate and formation of CCl3 radicals. Presumably a carbon thin film grows by the interaction of CO and CCl3 radicals with the iron catalytic surface forming a net structure of flat carbon nanorings with 20-40 nm in size.

thin films, composite materials, chemical vapor deposition (CVD), coatings, atomic force microscopy (AFM).

Volume 17, issue 1, 2016 year

Лазерный синтез тонких пленок железа, покрытых углеродом

Работа посвящена развитию способа ультрафиолетового лазерного фотосинтеза для производства тонких пленок при комнатных температурах. Продемонстрированы результаты синтеза тонких пленок при помощи фото-диссоциации углеродо- и металло-содержащих соединений. Тонкие пленки железа, покрытые углеродом на подложках из монокристаллического кремния, синтезированы при фотолизе смеси CCl4 и Fe(CO)5 с аргоном. Фото-диссоциация этой смеси приводит к появлению атомов железа, образующих железное нанопокрытие на подложке и генерации радикалов CCl3. Предположительно углеродное покрытие растет на железной пленке при взаимодействии молекул СО и радикалов CCl3 с каталитической поверхностью и образует сетчатую структуру плоских углеродных округлых наноструктур 20-40 нм в диаметре.

тонкие пленки, композитные материалы, осаждение химических паров, покрытия, атомно-силовой микроскоп.

Volume 17, issue 1, 2016 year

1. Ashfold M., Claeyssens F., Fuge G.M., Henley S.J. Pulsed laser ablation and deposition of thin films // Chem. Soc. Rev. 2004. V.33. P. 24-31.
2. Roth P. Particle synthesis in flames // Proc. Comb. Inst. 2007. V.31. P. 1773-1788.
3. He Y., Li X., Swihart M. Laser-driven aerosol synthesis of nickel nanoparticles // Chem. Mater. 2005. V.17. P.1017-1026.
4. Hitzbleck K., Wiggers H., Roth P. Controlled formation and size-selected deposition of indium nanoparticles from a microwave flow reactor on semiconductor surfaces // Appl. Phys. Lett. 2005. V.87. P.093105.
5. Takeguchi M., Shimojo M., Furuy K. Fabrication of magnetic nanostructures using electron beam induced chemical vapour deposition // Nanotechnology. 2005. V.16. P.1321–1325.
6. Huisken F., Kohn B., Alexandrescu R., Morjan I. Mass spectrometric characterization of iron clusters produced by laser photolysis of Fe(CO)5 in a flow reactor // Eur. Phys. J. D. 1999. V.9. P.141-144.
7. He H., Heist R.H., Mcintyre B.L., Blanton T.N. Ultrafine nickel particles generated by laser-induced gas phase photonucleation // Nanostruct. Mater. 1997. V.8. P.879-888.
8. Heszler P., Elihn K., Carlsson J.O. Optical characterisation of the photolytic decomposition of ferrocene into nanoparticles // Appl. Phys. A. 2000. V.70. P.613-616.
9. Eremin A.V., Gurentsov E.V., Schulz Ch. Influence of the bath gas on the condensation of supersaturated iron atom vapor at room temperature // J. Phys. D: Appl. Phys. 2008. V.41. P.055203.
10. Eremin A.V., Gurentsov E.V., Priemchenko K.Y. Iron particle growth induced by Kr-F excimer laser photolysis of Fe(CO)5 // J. Nanopart. Research. 2013. V.15. P.1537.
11. Armstrong J.V., Enrech M., Decrouez C., Lunney J.G., Coey J.M.D. Perpendicular magnetic anisotropy in iron films produced by laser chemical vapour deposition of Fe(CO)5 // IEEE Trans. Magnetic. 1990. V.26. P.1629-1631.
12. Alexandrescu R., Andrei A., Morjan I., Mulenko S., Stoica M., Voicu I. Temporal evolution in UV-laser-induced deposition from Mo(CO)6 // Thin Solid Films. 1993. V.218. P.68-74.
13. Alexandrescu R. Laser-stimulated processes in metal carbonyls for metal-based film synthesis // Appl. Surf. Sci. 1996. V.106. P.28-37.
14. Wang C.M., Baer D.R., Thomas L.E., Amonette J.E., Antony J., Qiang Y. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature // J. Appl. Phys. 2005. V.98. P.094308.
15. Okabe H. Photochemistry of small molecules. John Wiley. New York. 1978.
16. Wu J.J., Ku C.H., Wong T.C., Wu C.T., Chen K.H., Chen L.C. Growth of nanocrystalline diamond films in CCl4/H2 ambient // Thin Solid Films. 2005. V.473. P.24-30.
17. Eremin A.V., Gurentsov E.V., Hofmann M., Kock B., Schulz Ch. Nanoparticle formation from supersaturated carbon vapor generated by laser photolysis of carbon suboxide // J. Phys. D: Appl. Phys. 2006. V.39. P.4359-4365.
18. Heszler P., Carlsson J.O., Lu J. Amorphous carbon film deposition by laser induced C60 fragmentation // Appl. Surf. Sci. 1997. V.109/110. P.457–61.
19. Dravid V.P., Host J.J., Teng M.H., Elliott B., Hwang J., Johnson D.L., Mason T.O., Weertman J.R. Controlled-size nanocapsules // Nature. 1995. V.374. P.602.
20. Xu M-W. P., Brown J.J.Jr. Mechanism of Iron Catalysis of Carbon Monoxide. Decomposition in Refractories // J. Am. Ceram. Sos. 1989. V.72. P.110.