Моделирование радиационно-конвективного нагрева модельных камер ПВРД на водородном и углеводородном топливе



Simulation of radiation-convective heating of model cameras of ramjets on hydrocarbon and hydrogen fuels

Convective and radiative heating of internal surfaces of hypersonic ramjet combustion chambers (scramjets) are studied by numerical simulation.
Three kinds of scramjet chambers are considered: the dual-mode scramjet with a flame stabilizer, having form of an asymmetrical trapezoidal cavity, the combustion chamber of the experimental model "SCHOLAR", as well as the camera of hypothetical scramjet of axisymmetric shape.
Fields of chemical species concentrations, pressure and temperature calculated by the two-dimensional computer model based on the unsteady Navier-Stokes equations, energy conservation and diffusion equations together with the system of equations of chemical kinetics. On the basis of the thermic and chemical properties the spectral optical properties of the products of combustion are calculated. Solution of the equation of radiation heat transfer with the use of multi-group spectral model completes the calculation procedure.
In addition to solving the problem of radiative-convective heating of the inner surface of the scramjet cameras solved the problem of ignition of different fuels in the scramjet models and study of different kinds of gas-dynamic structures. Simplified kinetic combustion model were used, which nevertheless fairly wide spread in literature.
Found that certain flow regimes are non-stationary and radiative heating of the surface as a whole is not determinative, although in some parts of the surface the contribution of radiation heating into the total heating can be significant (especially with increasing pressure and with increasing the chamber dimension).

scramjet, ramjets, radiation-convection heating, dual-mode scramjet combustion chamber SCHOLAR, scramjet axially symmetric shape, a two-dimensional computer model, unsteady Navier-Stokes equations, spectral optical properties of combustion products, the selective transfer of thermal radiation inside the scramjet chambers


Том 15, выпуск 3, 2014 год



Конвективный и радиационный нагрев внутренних поверхностей трех модельных камер гиперзвуковых прямоточных воздушно-реактивных двигателей (ГПВРД) изучаются с помощью численного моделирования.
Рассмотрена камера двухрежимного ГПВРД со стабилизатором пламени, выполненным в виде каверны несимметричной трапецеидальной формы, камера сгорания экспериментальной энергетической установки SCHOLAR, а также камера гипо-тетического ГПВРД осесимметричной формы.
Поля концентраций химических веществ, давления и температуры рассчитываются по двумерной вычислительной модели, основанной на нестационарных уравнениях Навье-Стокса, сохранения энергии и уравнений диффузии совместно с системой уравнений химической кинетики. На их основе вычисляются поля спектральных оптических свойств продуктов сгорания, а затем рассчитывается перенос селективного теплового излучения внутри камер ГПВРД.
Помимо решения задачи о радиационно-конвективном нагреве внутренней поверхности камер ГПВРД решалась задача о воспламенении разных видов топлив в исследуемых модельных ГПВРД и о термогазодинамической структуре продуктов сгорания. При этом использовались весьма упрощенные кинетические модели горения, которые, тем не менее, достаточно широко распространены в литературе и хорошо апробированы.
Установлено, что некоторые режимы течения являются нестационарными, а радиационный нагрев поверхности в целом не является определяющим, хотя на некоторых участках поверхности его вклад в суммарный нагрев может оказаться заметным (при увеличении давления в камере сгорания и увеличении ее поперечных размеров).

гиперзвуковой прямоточный воздушно-реактивный двигатель, ГПВРД, радиационно-конвективный нагрев, двухрежимный ГПВРД, камера сгорания SCHOLAR, ГПВРД осесимметричной формы, двумерная вычислительная модель, нестационарные уравнения Навье?Стокса, спектральных оптических свойств продуктов сгорания, перенос селективного теплового излучения внутри камер ГПВРД


Том 15, выпуск 3, 2014 год



1. Donohue J.M., “Dual-Mode Scramjet Flameholding Operability Measurements,” AIAA paper 2013-0698, 2013, 26 p.
2. Donohue J.M., McDaniel J.C. Jr., “Complete Three-Dimensional Multiparameter Mapping of a Supersonic Ramp Fuel Injector Flowfield,” AIAA J., Vol.34, No.3, 1996, Pp. 455-462.
3. Cocks P.A.T., Dawes W.N., Cant R.S., “Simulations of the SCHOLAR Scramjet Experiments,” AIAA 2012-0944, 2012, 21 p.
4. Cocks P. A. T., Dawes W. N., Cant R. S., “The Influence of Turbulence-Chemistry Interaction Modelling for Supersonic Combustion,” AIAA 2011-0306, 2011, 12 p.
5. Surzhikov S.T., Shang J.S.,“Radiative Heat Exchange in a Hydrogen-Fueled Scramjet Combustion Chambers,” AIAA-2013-1056, 51st Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 07-10 January 2013, Grapevine (Dallas/ Ft. Worth Region), Texas, USA. 20 p. DOI: 10.2514/6.2013-448.
6. Xing F., Zhang S., Yao Y., “Numerical Simulation of Shoch-Induced-Combustion in Three-Dimensional HyShot Scramjet Model,” AIAA 2012-0945, 2012, 12 p.
7. Heiser, W. H., Pratt, D. T., “Hypersonic Airbreathing Propulsion,” AIAA, Inc., Washington, DC. 1994. 587 p.
8. Curran, E. T., “Scramjet Engines: The First Forty Years,” Journal of Propulsion and Power, Vol. 17, No. 6, 2001, Pp. 1138-1148.
9. Ingenito, A. and Bruno, C., “Physics and Regimes of Supersonic Combustion,” AIAA Journal, Vol. 48, No. 13, Pp. 515-525, 2010.
10. Ladeinde, F., “A Critical Review of Scramjet Combustion Simulation,” 47th AIAA Aerospace Sciences Meeting, AIAA-2009-127, 2009.
11. Mudford, N. R., Mulreany, P. J., McGuire, J. R., Odam, J., Boyce, R. R., and Paull, A., “CFD Calculations for Intake-Injection Shock-Induced-Combustion Scramjet Flight Experiments,” The 12th AIAA International Space Planes and Hypersonic Systems and Technologies, AIAA Paper 2003-7034, Dec. 2003.
12. Nelson, H.F., “Radiative Heating in Scramjet combustor,” J. Thermophysics and Heat Transfer, Vol. 11, No.1, 1997.
13. Crow A., Boyd I., Terrapon V., “Radiation Modeling of a Hydrogen-Fueled Scramjet,” AIAA 2011-3769, 2011, 15 p.
14. Norris, J. W. and Edwards, J. R., “Large-Eddy Simulation of High-Speed, Turbulent Diffusion Flames with Detailed Chemistry,” 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-1997-370, 1997.
15. Peterson, D. M., Candler, G. V. and Drayna, T. W., “Detached Eddy Simulation of a Generic Scramjet Inlet and Combustor,” 47th AIAA Aerospace Sciences Meeting, AIAA-2009-130, 2009.
16. Rodriguez, C. G. and Cutler, A. D., “Computational Simulation of a Supersonic-Combustion Benchmark Experiment,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2005-4424, 2005.
17. Rubins, P. M., and Bauer, R. C., “Review of Shock-Induced Supersonic Combustion Research and Hypersonic Applications,” Journal of Propulsion and Power, Vol. 10, No.5, 1994, Pp. 593-601.
18. Star, J. B., Edwards, J. R., Smart, M. K., and Baurle, R. A., “Numerical Simulation of Scramjet Combustion in a Shock Tunnel,” The 43rd Aerospace Science Meeting and Exhibit, AIAA Paper 2005-0428, 2005.
19. Turner, J. C. and Smart, M. K., “Application of Inlet Injection to a Three-Dimensional Scramjet at Mach 8,” AIAA Journal, Vol. 48, No. 4, 2010, Pp. 829–838.
20. Wilson, G. J. and MacCormack, R. W., “Modeling Supersonic Combustion Using a Fully Implicit Numerical Method”, AIAA Journal, Vol. 30, No. 4, 1992, pp. 1008-1015.
21. Bilger R.W., Starner S.H., “On Reduced Mechanisms for Methane - Air Combustion in Nonpremixed Flames,” Combustion and Flame, Vol.80, 1990, Pp.135-149.
22. Billig, F.S., “Research on Supersonic Combustion,” Journal of Propulsion and Power, Vol. 9, No. 4, 1993, Pp. 499-514.
23. Brindle, A., Boyce, R. R., and Neely, A. J., “CFD Analysis of an Ethylene-Fueled Intake-Injection Shock-Induced-Combustion Scramjet Configuration,” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies, AIAA Paper 2005-3239, 2005.
24. Coffee T.P., “Kinetic Mechanisms for Premixed, Laminar, Steady State Methane/Air Flames,” Combustion and Flame, Vol.55, 1984, Pp.161-170.
25. Coffee T.P., Kotlar A.J., Miller M.S., “The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. I. Stoichiometries,” Combustion and Flame. Vol.54, 1983, Pp.155-169.
26. Coffee T.P., Kotlar A.J., Miller M.S., “The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. II. Initial Temperatures and Pressures,” Combustion and Flame, Vol.58, 1984, Pp.59-67.
27. Curran, E. T., Heiser, W. H., and Pratt, D. T., “Fluid Phenomena in Scramjet Combustion Systems,” Annual Review of Fluid Mechanics, Vol. 28, Jan. 1996, Pp. 323-360.
28. Dagaut P., Bakali A.E., Ristori A., “The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels,” Fuel, Vol. 85, 2006, Pp. 944-956.
29. Dagaut P., Cathonnet M., “The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling,” Progress in Energy and Combustion Science, Vol. 32, 2006, Pp. 48-92.
30. Dryer F.L., Glassman I., “High-Temperature Oxidation of CO and CH4,” 14th Symp. on Comb, 1972, pp.987-1003.
31. Evans, J. S.; Schexnayder, C. J., Jr., “Influence of chemical kinetics and Unmixedness on burning in supersonic hydrogen flames,” AIAA J, Vol. 18, No 2, Pp. 188-193.
32. Gardner, A. D., Paull, A., and McIntyre, T. J., “Upstream Porthole Injection in a 2D Scramjet Model,” Shock Waves, Vol. 11, No. 5, 2002, Pp. 369-375.
33. Gerlinger, P., Nold, K. and Aigner, M., “Influence of reaction mechanisms, grid spacing, and inflow conditions on the numerical simulation of lifted supersonic flames”, Int. J. Numer. Meth. Fluids, Vol.62, No.12, 2010, Pp. 1357-1380.
34. Jachimowski C. J., “Chemical Kinetic Reaction Mechanism for the Combustion of Propane,” Combustion and Flame, Vol.55, 1984, Pp.213-224.
35. Jachimowski, C. J., “An Analytical Study of the Hydrogen-Air Reaction Mechanism With Application to Scramjet Combustion,” NASA Technical Paper 2791, 1988.
36. Maniscalco F., D’Anna A., Di Martino P., Cinque G., Colantuoni S., “Validation of Soot Formation and Oxidation models for a Kerosene Flame,” 31st Meeting on Combustion. Italian Section of the Combustion Institute.
37. Marinov, N. M., Westbrook, C. K. and Pitz, W. J., “Detailed and global chemical kinetics model for hydrogen”, Proceedings of the Eighth International Symposium on Transport Phenomena in Combustion, edited by S. H. Chan, Taylor & Francis: London, 1995, Pp. 118-129.
38. O’Conaire, M., Curran, H. J., Simmie, J. M., Pitz, R. W. and Westbrook, C. G., “A comprehensive modeling study of hydrogen oxidation”, International Journal of Chemical Kinetics, Vol. 11, 2004, Pp. 602-622.
39. Odam, J. and Paull, A., “Radical Farming in Scramjets,” New Res. in Num. and Exp. Fluid Mech., VI, NNFM 96, 2007, Pp.276-283.
40. Singh, D. J. and Jachimowski, C. J., “Quasi-global Reaction Model for Ethylene Combustion,” AIAA Journal, Vol. 32, No.1, 1994, Pp. 213-216.
41. Tsatsaronis G., “Prediction of Propagating Laminar Flames in Methane, Oxygen, Nitrogen Mixtures,” Combustion and Flame, Vol.33, 1978, Pp. 217-239.
42. Varatharajan B., Petrova M., Williams F.A., Tangirala V., “Two-step chemical-kinetic descriptions for hydrocarbon–oxygen-diluent ignition and detonation applications,” Proceedings of the Combustion Institute, Vol. 30, 2005, pp. 1869-1877.
43. Won, S.-H., Jeung, I.-S., Parent, B. and Choi, J.-Y., “Numerical Investigation of Transverse Hydrogen Jet into Supersonic Crossflow Using Detached-Eddy Simulation”, AIAA Journal, Vol. 48, No. 6, 2010, pp. 1047-1058.
44. Baurle R.A., Eklund, D.R., “Analysis of Dual-Mode Hydrocarbon Scramjet Operation at Mach 4-6.5,” Journal of Propulsion and Power, Vol.18, No.5, 2002, Pp. 990-1002.
45. Liu, J., and Tiwari, S. N., “Radiative Interactions in Chemically Reacting Compressible Nozzle Flows Using Monte Carlo Simulations,” AIAA Paper 94-2092, June 1994, 13 p.
46. Surzhikov S.T., Shang J.S.,” Numerical Prediction of Convective and Radiative Heating of Scramjet Combustion Chamber with Hydrocarbon Fuels, I,” AIAA-2013-1056, 51st Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 07-10 January 2013, Grapevine (Dallas/ Ft. Worth Region), Texas, USA. 16 p. DOI: 10.2514/6.2013-1076.
47. Surzhikov S.T., “Radiative Gasdynamic Model of a Martian Descent Space Vehicle,” AIAA 04-1355, 2004, 10 p.
48. Gurvich, L.V., Veitc, I.V., Medvedev, V.A. et al. “Thermodynamic Properties of Individual Substances,” HandBook. Moscow: «Nauka», 1978.
49. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., “Transport phenomenon,” 2nd edition, John Wiley & Sons, New York, 2002, pp. 25, 274, 526.
50. Surzhikov S.T., “Computing System for Mathematical Simulation of Selective Radiation Transfer,” AIAA Paper 2000-2369, 2000, 15 p.
51. Ludwig, C. B., Malkmus, W., Walker, J., Slack, M., and Reed, R., “The Standard Infrared Radiation Model,” AIAA Paper 81-1051, Jun. 1981.
52. Edwards J.R., Liou M.-S., “Low-Diffusion Flux-Splitting Methods for Flow at all Speeds,” AIAA Journal, Vol.36, No.9, 1998, Pp.1610-1617.
53. Котов Д.В., Суржиков С.Т. Расчет гиперзвукового течения и излучения вязкого химически реагирующего газа в канале, моделирующем участок ГПВРД// Теплофизика высоких температур. 2012. Т.50. Т1. С.126-136.
54. Svehla, R.A., “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures,” NASA TR-R-132. 1962. 26 p.
55. Суржиков С.Т. Оптические свойства газов и плазмы. Изд-во МГТУ им. Н.Э.Баумана. 2004. 576 c.
56. Суржиков С.Т. Спектральная излучательная способность равновесного высокотемпературного воздуха в спектральном диапазоне 2000 ÷ 8000 Å// Физико-химическая кинетика в газовой динамике. 2013. Т.14. Вып.3.
http://www.chemphys.edu.ru/pdf/2014-03-20-018.pdf
57. Суржиков С.Т. Расчет обтекания модели космического аппарата MSRO с использованием кодов NERAT-2D и NERAT-3D// Физико-химическая кинетика в газовой динамике. 2010. T.9. http://ww.chemphys.edu.ru/pdf/2010-01-12-003.pdf