Расчёт лучистого теплового потока на донную часть второй ступени РН



Calculation of a radiant heat flux for the base screen of the second stage rocket

A method for the solution of the equation of radiation transport by a method of the discrete directions on an unstructured three-dimensional grid is addressed in this article. Coefficients of radiation and absorption are assumed to be set by multigroup approach with spectrum base HITRAN and HITEMP. Calculation of a radiant heat flux is presented for the base screen of the stage II "Saturn V" launcher.

radiative heating, ray-tracing, multigroup approach, base screen, LOX/hydrogen rocket engine


Том 15, выпуск 1, 2014 год



В работе излагается метод решения уравнения переноса излучения методом дискретных направлений на неструктурированной трехмерной сетке. Описан процесс вычисления коэффициентов излучения и поглощения для многогруппового приближения с использованием баз данных спектроскопических характеристик HITRAN и HITEMP. Приводится расчет лучистого теплового потока к донной области второй ступени РН «Saturn V».

лучистый теплообмен, метод трассировки, многогрупповое приближение, донный экран, водород-кислородные маршевые двигатели


Том 15, выпуск 1, 2014 год



1. M. Lino da Silva. Contribution of CO 2 IR Radiation to Martian Entries Radiative Wall Fluxes, AIAA Paper 2011–135.
2. J. Beck, P.Omaly, M.Lino da Silva, S.Surzhikov. Radiative Heating Of The Exomars Entry Demonstrator Module, Proc. of ‘7th European Symposium on Aerothermodynamics’, Brugge, Belgium,
9–12 May 2011 (ESA SP-692, August 2011).
3. Беспалов В.А. Расчёт уравнения переноса излучения в многогрупповом приближении на кластере с использованием графических ускорителей. Космонавтика и ракетостроение . № 76, 2014.
4. L.S. Rothman et al, The HITRAN database: 1986 edition, Applied Optics, Vol. 26, No. 19, 1987.
5. L.S. Rothman et al, The HITRAN molecular database. Editions of 1991 and 1992, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 48, No. 5/6, Pp. 469–507, 1992.
6. L.S. Rothman et al, The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 60, No. 5, Pp. 665–710, 1998.
7. L.S. Rothman et al, The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 82, Pp. 5–44, 2003.
8. L.S. Rothman et al, The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 96, Pp. 139–204, 2005.
9. L.S. Rothman et al, The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, Pp. 533–572, 2009.
10. ftp://cfa-ftp.harvard.edu/pub/HITRAN2012
11. A.L. Laraia, R.R. Gamache et al, Total internal partition sums to support planetary remote sensing, Icarus Vol. 215, Pp. 391–400, 2011.
12. L.S. Rothman et al, “HITEMP, the High-Temperature Molecular Spectroscopic Database,” Journal of Quantitative Spectroscopy and Radiative Transfer 111, 2139-2150 (2010).
13. W.B. McAnelly, C.T.K. Young Space vehicle engine and heat shield environment review, Final report EE-MSFC-1774, Vol. 1, 1973.
14. S.C. Krausse Apollo/Saturn V postflight trajectory - AS-506, D5-15560-6, Boeing, 1969.